blob: 51adff82d4e5a0844af5a029e578aca9ed33e025 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
|
Serializer Benchmark
====================
Comparing parsing speed/memory usage of all C++ JSON libs I could find. Also including two msgpack implementations (C++/Ruby).
Goal is to output object.edges.last.rule.substr(1, 4).
Data are fairly large and complex objects (hypergraph representations) with a lot of different types, e.g. strings (ASCII), ints, floats, arrays
and sub-objects. Download data here [4] and put in the data/ directory.
Note that the comparison is unfair for some parsers, as they just do SAX-style parsing and do not actually fill "real" objects
with data (e.g. the cdec json parser).
* cdec-json-parser: ripped out of [1].
* gason: git clone https://github.com/vivkin/gason.git
* JsonBox: git clone https://github.com/anhero/JsonBox.git
* jsoncpp: git clone https://github.com/open-source-parsers/jsoncpp.git
* json-cpp: git clone "https://github.com/ascheglov/json-cpp.git"
* jsonxx: git clone https://github.com/hjiang/jsonxx.git
* libjson: wget "http://downloads.sourceforge.net/project/libjson/libjson_7.6.1.zip?r=&ts=1405248411&use_mirror=heanet"
* MicroJSON: wget http://grigory.info/distfiles/MicroJSON-0.3.2.tar.bz2
* msgpack-c: git clone https://github.com/msgpack/msgpack-c.git
* msgpack-ruby: gem install msgpack
* nosjob: go to [2] and figure out how to download a tarball
* picojson: git clone https://github.com/kazuho/picojson.git
* rapidjson: git clone https://github.com/miloyip/rapidjson.git
* sajson: git clone https://github.com/chadaustin/sajson.git
Put all libraries in lib/ and build as described by the authors of the respective
library.
To run the benchmark You'll need root privileges to clear the disk caches.
The run scripts assume that these scripts [3] are in the PATH.
Versions:
---------
* cdec-json-parser: SHA-1 d124d4aaa78b52b46f7ac8d7306be342d3405124
* gason: SHA-1 ede29fc5f0de8e47fd82c09f2f98123d2c867f28
* JsonBox: SHA-1 fcb82ebae41dffb90d32a49ac236d1608d9a67ee
* jsoncpp: SHA-1 655a9db0cc62394e81d3074a98c7191fbfc00259
* json-cpp: SHA-1 170121e2dc099895064305e38bfb25d90a807ce3
* libjson: version 7.6.1
* MicroJSON: version 0.3.2
* msgpack-c: SHA-1 197ed8c983a70d5892bf73dcd1a352bf8e2588df
* msgpack-ruby: version 0.5.8
* nosjob: SHA-1 e1d67401fcda6e05a536272532bdb9770bec27e8
* picojson: SHA-1 5e71db9bec7f22a041cd251c6d6d67e954396d5d
* rapidjson: SHA-1 63d054349ab56d278060cd3373e76a6933cf194a
* sajson: SHA-1 003988269f1774dfb184e1864f2f4e654965581e
---
* [1] https://github.com/redpony/cdec/tree/master/decoder
* [2] http://fossil.wanderinghorse.net/repos/nosjob/index.cgi/index
* [3] https://github.com/pks/scripts
* [4] http://simianer.de/serializer-benchmark-data.tar.gz
Results
=======
*Spoiler:* sajson and rapidjson are the fastest JSON parsers -- but msgpack is even faster.
Benchmarks were run on my trusty laptop (IBM/Lenovo X61s):
<pre>
Linux x 3.12.23 #1 SMP PREEMPT Fri Jul 4 15:09:43 CEST 2014 x86_64 Intel(R) Core(TM)2 Duo CPU L7500 @ 1.60GHz GenuineIntel GNU/Linux
</pre>
Disk is an Intel X25-E SSD.
JSON parsing benchmark
----------------------
REAPEAT=10
<pre>
[test_cdec_json_parser]
data/1020.json: 8.81 s
data/1570.json: 3.07 s
data/1391.json: 1.99 s
data/429.json: 0.6 s
data/2002.json: 0.32 s
data/1889.json: 0.07 s
data/1495.json: 0.01 s
data/748.json: 0.0 s
---
overall: 1.84 s
memory: 1 m
[test_gason]
data/1020.json: 4.34 s
data/1570.json: 1.52 s
data/1391.json: 1.05 s
data/429.json: 0.29 s
data/2002.json: 0.16 s
data/1889.json: 0.03 s
data/1495.json: 0.01 s
data/748.json: 0.01 s
---
overall: 0.91 s
memory: 389 m
[test_JsonBox]
data/1020.json: 36.15 s
data/1570.json: 11.91 s
data/1391.json: 8.25 s
data/429.json: 2.3 s
data/2002.json: 1.21 s
data/1889.json: 0.24 s
data/1495.json: 0.02 s
data/748.json: 0.0 s
---
overall: 7.42 s
memory: 901 m
[test_jsoncpp]
data/1020.json: 9.59 s
data/1570.json: 3.32 s
data/1391.json: 2.19 s
data/429.json: 0.64 s
data/2002.json: 0.34 s
data/1889.json: 0.07 s
data/1495.json: 0.01 s
data/748.json: 0.01 s
---
overall: 2.0 s
memory: 804 m
[test_json-cpp]
data/1020.json: 4.32 s
data/1570.json: 1.44 s
data/1391.json: 0.99 s
data/429.json: 0.28 s
data/2002.json: 0.15 s
data/1889.json: 0.03 s
data/1495.json: 0.01 s
data/748.json: 0.0 s
---
overall: 0.89 s
memory: 263 m
[test_jsonxx]
data/1020.json: 36.85 s
data/1570.json: 12.86 s
data/1391.json: 8.36 s
data/429.json: 2.4 s
data/2002.json: 1.29 s
data/1889.json: 0.26 s
data/1495.json: 0.01 s
data/748.json: 0.0 s
---
overall: 7.66 s
memory: 1440 m
[test_libjson]
data/1020.json: 13.09 s
data/1570.json: 4.51 s
data/1391.json: 3.0 s
data/429.json: 0.86 s
data/2002.json: 0.46 s
data/1889.json: 0.09 s
data/1495.json: 0.01 s
data/748.json: 0.0 s
---
overall: 2.72 s
memory: 1649 m
[test_nosjob]
data/1020.json: 17.64 s
data/1570.json: 6.18 s
data/1391.json: 4.09 s
data/429.json: 1.16 s
data/2002.json: 0.62 s
data/1889.json: 0.13 s
data/1495.json: 0.01 s
data/748.json: 0.0 s
---
overall: 3.68 s
memory: 931 m
[test_picojson]
data/1020.json: 17.35 s
data/1570.json: 5.51 s
data/1391.json: 3.97 s
data/429.json: 1.07 s
data/2002.json: 0.55 s
data/1889.json: 0.11 s
data/1495.json: 0.01 s
data/748.json: 0.01 s
---
overall: 3.53 s
memory: 1049 m
[test_rapidjson]
data/1020.json: 3.27 s
data/1570.json: 1.08 s
data/1391.json: 0.75 s
data/429.json: 0.21 s
data/2002.json: 0.11 s
data/1889.json: 0.03 s
data/1495.json: 0.01 s
data/748.json: 0.0 s
---
overall: 0.67 s
memory: 415 m
[test_sajson]
data/1020.json: 2.94 s
data/1570.json: 0.97 s
data/1391.json: 0.66 s
data/429.json: 0.19 s
data/2002.json: 0.1 s
data/1889.json: 0.02 s
data/1495.json: 0.0 s
data/748.json: 0.0 s
---
overall: 0.6 s
memory: 293 m
</pre>
MSGPACK parsing benchmark
-------------------------
REAPEAT=10
<pre>
[test_msgpack]
data/1020.pak: 2.24 s
data/1570.pak: 0.82 s
data/1391.pak: 0.51 s
data/429.pak: 0.15 s
data/2002.pak: 0.08 s
data/1889.pak: 0.02 s
data/1495.pak: 0.0 s
data/748.pak: 0.0 s
---
overall: 0.47
memory: 446 m
[test_msgpack_streaming]
data/1020.pak2: 0.8 s
data/1570.pak2: 0.28 s
data/1391.pak2: 0.18 s
data/429.pak2: 0.06 s
data/2002.pak2: 0.04 s
data/1889.pak2: 0.01 s
data/1495.pak2: 0.0 s
data/748.pak2: 0.0 s
---
overall: 0.17
memory: 175 m
[test_msgpack_ruby]
data/1020.pak: 1.94 s
data/1570.pak: 0.77 s
data/1391.pak: 0.52 s
data/429.pak: 0.24 s
data/2002.pak: 0.19 s
data/1889.pak: 0.14 s
data/1495.pak: 0.13 s
data/748.pak: 0.13 s
---
overall: 0.5
memory: 224 m
</pre>
|