blob: 32fe739fcd2284753867cc0cd9fd6b794cf3c590 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
|
import numpy as np
import math
dmodel = 32
num_heads = 2
embedding_dim = dmodel #dmodel // num_heads
nwords = 4
#assert(dmodel/num_heads == embedding_dim)
states = np.array([np.ones(shape=[embedding_dim])*(i*0.1) for i in range(nwords)]) # num. words x embedding dim
Wqs = []
Wks = []
Wvs = []
scores = []
def softmax(m):
return np.exp(m) / np.sum(np.exp(m), axis=1)
for h in range(num_heads):
Wq = np.random.rand(embedding_dim, int(dmodel/num_heads))
Wk = np.random.rand(embedding_dim, int(dmodel/num_heads))
Wv = np.random.rand(embedding_dim, int(dmodel/num_heads))
queries = np.matmul(states, Wq)
keys = np.matmul(states, Wk)
print(states.shape)
values = np.matmul(states, Wv)
print(values.shape)
exit()
out = np.matmul(queries, np.transpose(keys))
out = out/math.sqrt(dmodel)
# manual
#out_max = []
#for i in range(out.shape[0]):
# out_max.append(softmax(out[i]))
#out = np.array(out_max)
out = softmax(out)
out = np.matmul(out, values)
Wqs.append(Wq)
Wks.append(Wk)
Wvs.append(Wv)
scores.append(out)
out = np.concatenate(scores, axis=0)
out = np.matmul(np.random.rand(nwords, out.shape[0]), out)
|