summaryrefslogtreecommitdiff
path: root/data/iris/svm_light
diff options
context:
space:
mode:
Diffstat (limited to 'data/iris/svm_light')
-rwxr-xr-xdata/iris/svm_light/run.sh7
-rw-r--r--data/iris/svm_light/setosa.learnout18
-rw-r--r--data/iris/svm_light/setosa.model47
-rw-r--r--data/iris/svm_light/svm_predictions150
-rw-r--r--data/iris/svm_light/versicolor-v-rest.model112
-rw-r--r--data/iris/svm_light/versicolor.learnout18
-rw-r--r--data/iris/svm_light/versicolor.model112
-rw-r--r--data/iris/svm_light/virginica-v-rest.shuf.data.model94
-rw-r--r--data/iris/svm_light/virginica.learnout18
-rw-r--r--data/iris/svm_light/virginica.model94
10 files changed, 670 insertions, 0 deletions
diff --git a/data/iris/svm_light/run.sh b/data/iris/svm_light/run.sh
new file mode 100755
index 0000000..9040912
--- /dev/null
+++ b/data/iris/svm_light/run.sh
@@ -0,0 +1,7 @@
+#!/bin/bash
+
+
+for i in setosa virginica versicolor; do
+ ../../svm_light/svm_learn ../bezdekIris.$i-v-rest.shuf.data $i.model &>$i.learnout
+done
+
diff --git a/data/iris/svm_light/setosa.learnout b/data/iris/svm_light/setosa.learnout
new file mode 100644
index 0000000..b5ff56e
--- /dev/null
+++ b/data/iris/svm_light/setosa.learnout
@@ -0,0 +1,18 @@
+Scanning examples...done
+Reading examples into memory...100..OK. (150 examples read)
+Setting default regularization parameter C=0.0162
+Optimizing...............done. (16 iterations)
+Optimization finished (0 misclassified, maxdiff=0.00000).
+Runtime in cpu-seconds: 0.00
+Number of SV: 36 (including 34 at upper bound)
+L1 loss: loss=5.54515
+Norm of weight vector: |w|=0.68130
+Norm of longest example vector: |x|=11.11126
+Estimated VCdim of classifier: VCdim<=30.12233
+Computing XiAlpha-estimates...done
+Runtime for XiAlpha-estimates in cpu-seconds: 0.00
+XiAlpha-estimate of the error: error<=22.67% (rho=1.00,depth=0)
+XiAlpha-estimate of the recall: recall=>66.00% (rho=1.00,depth=0)
+XiAlpha-estimate of the precision: precision=>66.00% (rho=1.00,depth=0)
+Number of kernel evaluations: 1803
+Writing model file...done
diff --git a/data/iris/svm_light/setosa.model b/data/iris/svm_light/setosa.model
new file mode 100644
index 0000000..139fa72
--- /dev/null
+++ b/data/iris/svm_light/setosa.model
@@ -0,0 +1,47 @@
+SVM-light Version V6.02
+0 # kernel type
+3 # kernel parameter -d
+1 # kernel parameter -g
+1 # kernel parameter -s
+1 # kernel parameter -r
+empty# kernel parameter -u
+4 # highest feature index
+150 # number of training documents
+37 # number of support vectors plus 1
+-1.941408 # threshold b, each following line is a SV (starting with alpha*y)
+-0.016249222750612444393647493257049 1:5.5 2:2.5 3:4 4:1.3 #
+0.016249222750612444393647493257049 1:4.9000001 2:3.0999999 3:1.5 4:0.1 #
+-0.016249222750612444393647493257049 1:5.0999999 2:2.5 3:3 4:1.1 #
+-0.016249222750612444393647493257049 1:4.9000001 2:2.4000001 3:3.3 4:1 #
+0.016249222750612444393647493257049 1:5.6999998 2:3.8 3:1.7 4:0.30000001 #
+0.016249222750612444393647493257049 1:4.8000002 2:3.4000001 3:1.6 4:0.2 #
+-0.016249222750612444393647493257049 1:5 2:2.3 3:3.3 4:1 #
+-0.016249222750612444393647493257049 1:5.6999998 2:2.5999999 3:3.5 4:1 #
+0.016249222750612444393647493257049 1:5.0999999 2:3.3 3:1.7 4:0.5 #
+0.016249222750612444393647493257049 1:4.8000002 2:3.4000001 3:1.9 4:0.2 #
+-0.016249222750612444393647493257049 1:5.5999999 2:2.9000001 3:3.5999999 4:1.3 #
+-0.016249222750612444393647493257049 1:5 2:2 3:3.5 4:1 #
+0.016249222750612444393647493257049 1:5.0999999 2:3.8 3:1.9 4:0.40000001 #
+0.016249222750612444393647493257049 1:5 2:3 3:1.6 4:0.2 #
+-0.016249222750612444393647493257049 1:5.5 2:2.4000001 3:3.7 4:1 #
+0.016249222750612444393647493257049 1:4.5 2:2.3 3:1.3 4:0.30000001 #
+-0.016249222750612444393647493257049 1:5.5 2:2.4000001 3:3.8 4:1.1 #
+-0.016249222750612444393647493257049 1:5.1999998 2:2.7 3:3.9000001 4:1.4 #
+0.016249222750612444393647493257049 1:5.4000001 2:3.4000001 3:1.7 4:0.2 #
+0.016249222750612444393647493257049 1:5 2:3.5 3:1.6 4:0.60000002 #
+-0.016249222750612444393647493257049 1:5.8000002 2:2.7 3:3.9000001 4:1.2 #
+0.016249222750612444393647493257049 1:4.8000002 2:3.0999999 3:1.6 4:0.2 #
+-0.016249222750612444393647493257049 1:5.5999999 2:2.5 3:3.9000001 4:1.1 #
+0.016249222750612444393647493257049 1:5 2:3.4000001 3:1.6 4:0.40000001 #
+-0.016249222750612444393647493257049 1:5.5999999 2:3 3:4.0999999 4:1.3 #
+-0.016249222750612444393647493257049 1:5.8000002 2:2.7 3:4.0999999 4:1 #
+0.016249222750612444393647493257049 1:5.4000001 2:3.9000001 3:1.7 4:0.40000001 #
+0.016249222750612444393647493257049 1:5.4000001 2:3.4000001 3:1.5 4:0.40000001 #
+-0.016249222750612444393647493257049 1:5.8000002 2:2.5999999 3:4 4:1.2 #
+0.016249222750612444393647493257049 1:4.6999998 2:3.2 3:1.6 4:0.2 #
+-0.016249222750612444393647493257049 1:6.0999999 2:2.8 3:4 4:1.3 #
+-0.016249222750612444393647493257049 1:5.6999998 2:3 3:4.1999998 4:1.2 #
+0.016249222750612444393647493257049 1:4.9000001 2:3.0999999 3:1.5 4:0.2 #
+0.016249222750612444393647493257049 1:4.8000002 2:3 3:1.4 4:0.30000001 #
+-0.00090280526935266995625095631794466 1:5.6999998 2:2.8 3:4.0999999 4:1.3 #
+0.00090280526935266518576139738172515 1:5.0999999 2:3.4000001 3:1.5 4:0.2 #
diff --git a/data/iris/svm_light/svm_predictions b/data/iris/svm_light/svm_predictions
new file mode 100644
index 0000000..e104970
--- /dev/null
+++ b/data/iris/svm_light/svm_predictions
@@ -0,0 +1,150 @@
+-1.8138697
+1.2878911
+-1.7677399
+-1.9612142
+-2.3182909
+-1.4727351
+-1.883985
+-2.390952
+-1.7580716
+-1.4075035
+-1.3961381
+1.1324131
+-2.1712263
+-0.82728879
+0.90683775
+-1.6604951
+0.79102587
+0.98026618
+-1.4763009
+1.4024211
+-0.9473525
+1.0194991
+-0.89066993
+-2.8225765
+1.0533155
+-1.7677399
+-2.3651247
+-1.1651284
+1.0121508
+-1.9282462
+-1.9809116
+-0.96976753
+-1.2746572
+-1.2054445
+0.79433894
+1.2039277
+-0.27965375
+-2.2387961
+1.0856154
+-1.1915605
+1.0555994
+-1.6263266
+-1.2375276
+-2.0151344
+1.1120294
+-1.8655152
+-1.3856573
+-1.739376
+-1.7851717
+-2.1716776
+1.0327151
+-1.5845481
+0.80212051
+1.0436653
+-1.2811569
+-2.0065223
+-1.2849393
+1.006933
+-1.4129379
+-0.96243722
+-2.2656703
+-1.0280661
+1.0790976
+-0.63842767
+1.0860306
+1.1019639
+-0.61264555
+0.85730467
+-1.0933789
+-1.7236774
+-0.99999998
+-1.6915582
+-0.67015871
+-2.1947245
+1.013216
+-1.9547325
+-1.9658001
+-1.3044564
+-2.3703697
+-1.7211588
+-0.85837002
+-2.2648218
+1.0553647
+1.019481
+-0.74440875
+-1.3338404
+-1.5992446
+1.1482922
+1.1519302
+1.130698
+-1.0396661
+-2.8842062
+0.87955707
+-0.88017109
+1.1487436
+0.8749712
+0.84158805
+-1.5333811
+-0.97333327
+1.006951
+-1.2981734
+-2.287273
+1.0064997
+-0.42758489
+-1.7201116
+-2.0677999
+-2.4024529
+0.89317031
+-1.4807336
+1.1321965
+-2.0593956
+-2.5532998
+-1.6059789
+-0.9964522
+0.92111895
+-1.4496342
+-1.9822027
+1.1718446
+0.95768883
+1
+1.1642435
+-1.167647
+-2.1102105
+1.0708647
+-1.2318765
+-1.621497
+-2.2222218
+0.99078303
+-0.9934823
+1.0461659
+-2.6156338
+-1.0127647
+-1.4688986
+-2.6475091
+0.99666888
+-1.229376
+0.96728484
+-2.1252771
+0.9133555
+-1.3560207
+-2.6238667
+1.1281974
+1.0528822
+0.9540508
+-1.6983106
+-0.46051667
+-1.0658815
+-3.2014274
+-2.9727374
+-2.510131
diff --git a/data/iris/svm_light/versicolor-v-rest.model b/data/iris/svm_light/versicolor-v-rest.model
new file mode 100644
index 0000000..e2f8f03
--- /dev/null
+++ b/data/iris/svm_light/versicolor-v-rest.model
@@ -0,0 +1,112 @@
+SVM-light Version V6.02
+0 # kernel type
+3 # kernel parameter -d
+1 # kernel parameter -g
+1 # kernel parameter -s
+1 # kernel parameter -r
+empty# kernel parameter -u
+4 # highest feature index
+150 # number of training documents
+102 # number of support vectors plus 1
+0.72531938 # threshold b, each following line is a SV (starting with alpha*y)
+-0.016249222750612423576965781535364 1:4.5 2:2.3 3:1.3 4:0.30000001 #
+0.016249222750612423576965781535364 1:5.5999999 2:2.9000001 3:3.5999999 4:1.3 #
+-0.016249222750612423576965781535364 1:6.5 2:3 3:5.5 4:1.8 #
+-0.016249222750612423576965781535364 1:7.6999998 2:2.5999999 3:6.9000001 4:2.3 #
+0.016249222750612423576965781535364 1:5.0999999 2:2.5 3:3 4:1.1 #
+0.016249222750612423576965781535364 1:4.9000001 2:2.4000001 3:3.3 4:1 #
+-0.016249222750612423576965781535364 1:4.3000002 2:3 3:1.1 4:0.1 #
+0.016249222750612423576965781535364 1:6.9000001 2:3.0999999 3:4.9000001 4:1.5 #
+-0.016249222750612423576965781535364 1:4.4000001 2:3 3:1.3 4:0.2 #
+0.016249222750612423576965781535364 1:7 2:3.2 3:4.6999998 4:1.4 #
+-0.016249222750612423576965781535364 1:7.6999998 2:2.8 3:6.6999998 4:2 #
+0.016249222750612423576965781535364 1:5 2:2.3 3:3.3 4:1 #
+-0.016249222750612423576965781535364 1:4.4000001 2:2.9000001 3:1.4 4:0.2 #
+0.016249222750612423576965781535364 1:6.6999998 2:3 3:5 4:1.7 #
+-0.016249222750612423576965781535364 1:7.5999999 2:3 3:6.5999999 4:2.0999999 #
+-0.016249222750612423576965781535364 1:7.6999998 2:3 3:6.0999999 4:2.3 #
+0.016249222750612423576965781535364 1:5.6999998 2:2.5999999 3:3.5 4:1 #
+0.016249222750612423576965781535364 1:5 2:2 3:3.5 4:1 #
+-0.0062366315768189184431946614495246 1:4.4000001 2:3.2 3:1.3 4:0.2 #
+0.016249222750612423576965781535364 1:6.6999998 2:3.0999999 3:4.6999998 4:1.5 #
+-0.016249222750612423576965781535364 1:4.9000001 2:2.5 3:4.5 4:1.7 #
+0.016249222750612423576965781535364 1:6.6999998 2:3.0999999 3:4.4000001 4:1.4 #
+-0.016249222750612423576965781535364 1:6 2:2.2 3:5 4:1.5 #
+0.016249222750612423576965781535364 1:6 2:3.4000001 3:4.5 4:1.6 #
+-0.016249222750612423576965781535364 1:4.8000002 2:3 3:1.4 4:0.30000001 #
+0.016249222750612423576965781535364 1:6.3000002 2:3.3 3:4.6999998 4:1.6 #
+-0.016249222750612423576965781535364 1:6 2:3 3:4.8000002 4:1.8 #
+0.016249222750612423576965781535364 1:5.5 2:2.4000001 3:3.7 4:1 #
+-0.016249222750612423576965781535364 1:5.6999998 2:2.5 3:5 4:2 #
+-0.016249222750612423576965781535364 1:5.8000002 2:2.8 3:5.0999999 4:2.4000001 #
+0.016249222750612423576965781535364 1:6.4000001 2:3.2 3:4.5 4:1.5 #
+0.016249222750612423576965781535364 1:6.5999999 2:3 3:4.4000001 4:1.4 #
+-0.016249222750612423576965781535364 1:6.0999999 2:3 3:4.9000001 4:1.8 #
+-0.016249222750612423576965781535364 1:4.8000002 2:3 3:1.4 4:0.1 #
+0.016249222750612423576965781535364 1:5.9000001 2:3.2 3:4.8000002 4:1.8 #
+0.016249222750612423576965781535364 1:6 2:2.7 3:5.0999999 4:1.6 #
+-0.016249222750612423576965781535364 1:7.3000002 2:2.9000001 3:6.3000002 4:1.8 #
+-0.016249222750612423576965781535364 1:7.4000001 2:2.8 3:6.0999999 4:1.9 #
+0.016249222750612423576965781535364 1:5.5 2:2.4000001 3:3.8 4:1.1 #
+0.016249222750612423576965781535364 1:5.1999998 2:2.7 3:3.9000001 4:1.4 #
+-0.016249222750612423576965781535364 1:4.6999998 2:3.2 3:1.6 4:0.2 #
+-0.016249222750612423576965781535364 1:6.6999998 2:2.5 3:5.8000002 4:1.8 #
+0.016249222750612423576965781535364 1:6.4000001 2:2.9000001 3:4.3000002 4:1.3 #
+0.016249222750612423576965781535364 1:6.0999999 2:2.8 3:4 4:1.3 #
+-0.016249222750612423576965781535364 1:6.4000001 2:3.0999999 3:5.5 4:1.8 #
+0.016249222750612423576965781535364 1:6.8000002 2:2.8 3:4.8000002 4:1.4 #
+-0.016249222750612423576965781535364 1:7.0999999 2:3 3:5.9000001 4:2.0999999 #
+0.016249222750612423576965781535364 1:5.5999999 2:3 3:4.0999999 4:1.3 #
+-0.016249222750612423576965781535364 1:4.5999999 2:3.0999999 3:1.5 4:0.2 #
+0.016249222750612423576965781535364 1:6.5999999 2:2.9000001 3:4.5999999 4:1.3 #
+-0.016249222750612423576965781535364 1:7.1999998 2:3.2 3:6 4:1.8 #
+-0.010008109004404408537425297254231 1:6.9000001 2:3.0999999 3:5.4000001 4:2.0999999 #
+0.016249222750612423576965781535364 1:5.6999998 2:3 3:4.1999998 4:1.2 #
+0.016249222750612423576965781535364 1:5.8000002 2:2.7 3:3.9000001 4:1.2 #
+-0.016249222750612423576965781535364 1:4.9000001 2:3 3:1.4 4:0.2 #
+0.016249222750612423576965781535364 1:6.5 2:2.8 3:4.5999999 4:1.5 #
+-0.016249222750612423576965781535364 1:6.0999999 2:2.5999999 3:5.5999999 4:1.4 #
+0.016249222750612423576965781535364 1:5.9000001 2:3 3:4.1999998 4:1.5 #
+-0.016249222750612423576965781535364 1:6.3000002 2:2.5 3:5 4:1.9 #
+0.016249222750612423576965781535364 1:5.6999998 2:2.9000001 3:4.1999998 4:1.3 #
+-0.016249222750612423576965781535364 1:5.8000002 2:2.7 3:5.0999999 4:1.9 #
+0.016249222750612423576965781535364 1:6.0999999 2:3 3:4.5999999 4:1.4 #
+-0.016249222750612423576965781535364 1:5 2:3 3:1.6 4:0.2 #
+0.016249222750612423576965781535364 1:5.5999999 2:3 3:4.5 4:1.5 #
+-0.016249222750612423576965781535364 1:6.5 2:3 3:5.8000002 4:2.2 #
+-0.016249222750612423576965781535364 1:6.4000001 2:2.8 3:5.5999999 4:2.2 #
+0.016249222750612423576965781535364 1:5.6999998 2:2.8 3:4.0999999 4:1.3 #
+0.016249222750612423576965781535364 1:5.8000002 2:2.7 3:4.0999999 4:1 #
+-0.016249222750612423576965781535364 1:4.5999999 2:3.2 3:1.4 4:0.2 #
+-0.016249222750612423576965781535364 1:4.9000001 2:3.0999999 3:1.5 4:0.1 #
+0.016249222750612423576965781535364 1:6.0999999 2:2.9000001 3:4.6999998 4:1.4 #
+0.016249222750612423576965781535364 1:6 2:2.9000001 3:4.5 4:1.5 #
+-0.016249222750612423576965781535364 1:6.8000002 2:3 3:5.5 4:2.0999999 #
+-0.016249222750612423576965781535364 1:7.1999998 2:3 3:5.8000002 4:1.6 #
+0.016249222750612423576965781535364 1:5.5999999 2:2.5 3:3.9000001 4:1.1 #
+0.016249222750612423576965781535364 1:5.8000002 2:2.5999999 3:4 4:1.2 #
+-0.016249222750612423576965781535364 1:5.8000002 2:2.7 3:5.0999999 4:1.9 #
+0.016249222750612423576965781535364 1:6.1999998 2:2.9000001 3:4.3000002 4:1.3 #
+-0.016249222750612423576965781535364 1:5.5999999 2:2.8 3:4.9000001 4:2 #
+0.016249222750612423576965781535364 1:5.4000001 2:3 3:4.5 4:1.5 #
+-0.016249222750612423576965781535364 1:4.8000002 2:3.0999999 3:1.6 4:0.2 #
+0.016249222750612423576965781535364 1:6.0999999 2:2.8 3:4.6999998 4:1.2 #
+-0.016249222750612423576965781535364 1:6.4000001 2:2.8 3:5.5999999 4:2.0999999 #
+0.016249222750612423576965781535364 1:5.5999999 2:2.7 3:4.1999998 4:1.3 #
+-0.016249222750612423576965781535364 1:6.4000001 2:2.7 3:5.3000002 4:1.9 #
+0.016249222750612423576965781535364 1:5.6999998 2:2.8 3:4.5 4:1.3 #
+-0.016249222750612423576965781535364 1:6.3000002 2:2.8 3:5.0999999 4:1.5 #
+-0.016249222750612423576965781535364 1:6.3000002 2:2.9000001 3:5.5999999 4:1.8 #
+0.016249222750612423576965781535364 1:6.3000002 2:2.5 3:4.9000001 4:1.5 #
+0.016249222750612423576965781535364 1:5.5 2:2.5 3:4 4:1.3 #
+-0.016249222750612423576965781535364 1:4.6999998 2:3.2 3:1.3 4:0.2 #
+0.016249222750612423576965781535364 1:6.3000002 2:2.3 3:4.4000001 4:1.3 #
+-0.016249222750612423576965781535364 1:6.3000002 2:2.7 3:4.9000001 4:1.8 #
+0.016249222750612423576965781535364 1:5.5 2:2.5999999 3:4.4000001 4:1.2 #
+-0.016249222750612423576965781535364 1:6.1999998 2:2.8 3:4.8000002 4:1.8 #
+-0.016249222750612423576965781535364 1:5.9000001 2:3 3:5.0999999 4:1.8 #
+0.016249222750612423576965781535364 1:5.5 2:2.3 3:4 4:1.3 #
+0.016249222750612423576965781535364 1:6.1999998 2:2.2 3:4.5 4:1.5 #
+-0.016249222750612423576965781535364 1:4.9000001 2:3.0999999 3:1.5 4:0.2 #
+0.016249222750612423576965781535364 1:6 2:2.2 3:4 4:1 #
+-0.016249222750612423576965781535364 1:6.5 2:3 3:5.1999998 4:2 #
diff --git a/data/iris/svm_light/versicolor.learnout b/data/iris/svm_light/versicolor.learnout
new file mode 100644
index 0000000..f2130b5
--- /dev/null
+++ b/data/iris/svm_light/versicolor.learnout
@@ -0,0 +1,18 @@
+Scanning examples...done
+Reading examples into memory...100..OK. (150 examples read)
+Setting default regularization parameter C=0.0162
+Optimizing.........................................................................done. (74 iterations)
+Optimization finished (50 misclassified, maxdiff=0.00038).
+Runtime in cpu-seconds: 0.00
+Number of SV: 101 (including 99 at upper bound)
+L1 loss: loss=99.35495
+Norm of weight vector: |w|=0.10241
+Norm of longest example vector: |x|=11.11126
+Estimated VCdim of classifier: VCdim<=2.24751
+Computing XiAlpha-estimates...done
+Runtime for XiAlpha-estimates in cpu-seconds: 0.00
+XiAlpha-estimate of the error: error<=66.67% (rho=1.00,depth=0)
+XiAlpha-estimate of the recall: recall=>0.00% (rho=1.00,depth=0)
+XiAlpha-estimate of the precision: precision=>0.00% (rho=1.00,depth=0)
+Number of kernel evaluations: 2578
+Writing model file...done
diff --git a/data/iris/svm_light/versicolor.model b/data/iris/svm_light/versicolor.model
new file mode 100644
index 0000000..e2f8f03
--- /dev/null
+++ b/data/iris/svm_light/versicolor.model
@@ -0,0 +1,112 @@
+SVM-light Version V6.02
+0 # kernel type
+3 # kernel parameter -d
+1 # kernel parameter -g
+1 # kernel parameter -s
+1 # kernel parameter -r
+empty# kernel parameter -u
+4 # highest feature index
+150 # number of training documents
+102 # number of support vectors plus 1
+0.72531938 # threshold b, each following line is a SV (starting with alpha*y)
+-0.016249222750612423576965781535364 1:4.5 2:2.3 3:1.3 4:0.30000001 #
+0.016249222750612423576965781535364 1:5.5999999 2:2.9000001 3:3.5999999 4:1.3 #
+-0.016249222750612423576965781535364 1:6.5 2:3 3:5.5 4:1.8 #
+-0.016249222750612423576965781535364 1:7.6999998 2:2.5999999 3:6.9000001 4:2.3 #
+0.016249222750612423576965781535364 1:5.0999999 2:2.5 3:3 4:1.1 #
+0.016249222750612423576965781535364 1:4.9000001 2:2.4000001 3:3.3 4:1 #
+-0.016249222750612423576965781535364 1:4.3000002 2:3 3:1.1 4:0.1 #
+0.016249222750612423576965781535364 1:6.9000001 2:3.0999999 3:4.9000001 4:1.5 #
+-0.016249222750612423576965781535364 1:4.4000001 2:3 3:1.3 4:0.2 #
+0.016249222750612423576965781535364 1:7 2:3.2 3:4.6999998 4:1.4 #
+-0.016249222750612423576965781535364 1:7.6999998 2:2.8 3:6.6999998 4:2 #
+0.016249222750612423576965781535364 1:5 2:2.3 3:3.3 4:1 #
+-0.016249222750612423576965781535364 1:4.4000001 2:2.9000001 3:1.4 4:0.2 #
+0.016249222750612423576965781535364 1:6.6999998 2:3 3:5 4:1.7 #
+-0.016249222750612423576965781535364 1:7.5999999 2:3 3:6.5999999 4:2.0999999 #
+-0.016249222750612423576965781535364 1:7.6999998 2:3 3:6.0999999 4:2.3 #
+0.016249222750612423576965781535364 1:5.6999998 2:2.5999999 3:3.5 4:1 #
+0.016249222750612423576965781535364 1:5 2:2 3:3.5 4:1 #
+-0.0062366315768189184431946614495246 1:4.4000001 2:3.2 3:1.3 4:0.2 #
+0.016249222750612423576965781535364 1:6.6999998 2:3.0999999 3:4.6999998 4:1.5 #
+-0.016249222750612423576965781535364 1:4.9000001 2:2.5 3:4.5 4:1.7 #
+0.016249222750612423576965781535364 1:6.6999998 2:3.0999999 3:4.4000001 4:1.4 #
+-0.016249222750612423576965781535364 1:6 2:2.2 3:5 4:1.5 #
+0.016249222750612423576965781535364 1:6 2:3.4000001 3:4.5 4:1.6 #
+-0.016249222750612423576965781535364 1:4.8000002 2:3 3:1.4 4:0.30000001 #
+0.016249222750612423576965781535364 1:6.3000002 2:3.3 3:4.6999998 4:1.6 #
+-0.016249222750612423576965781535364 1:6 2:3 3:4.8000002 4:1.8 #
+0.016249222750612423576965781535364 1:5.5 2:2.4000001 3:3.7 4:1 #
+-0.016249222750612423576965781535364 1:5.6999998 2:2.5 3:5 4:2 #
+-0.016249222750612423576965781535364 1:5.8000002 2:2.8 3:5.0999999 4:2.4000001 #
+0.016249222750612423576965781535364 1:6.4000001 2:3.2 3:4.5 4:1.5 #
+0.016249222750612423576965781535364 1:6.5999999 2:3 3:4.4000001 4:1.4 #
+-0.016249222750612423576965781535364 1:6.0999999 2:3 3:4.9000001 4:1.8 #
+-0.016249222750612423576965781535364 1:4.8000002 2:3 3:1.4 4:0.1 #
+0.016249222750612423576965781535364 1:5.9000001 2:3.2 3:4.8000002 4:1.8 #
+0.016249222750612423576965781535364 1:6 2:2.7 3:5.0999999 4:1.6 #
+-0.016249222750612423576965781535364 1:7.3000002 2:2.9000001 3:6.3000002 4:1.8 #
+-0.016249222750612423576965781535364 1:7.4000001 2:2.8 3:6.0999999 4:1.9 #
+0.016249222750612423576965781535364 1:5.5 2:2.4000001 3:3.8 4:1.1 #
+0.016249222750612423576965781535364 1:5.1999998 2:2.7 3:3.9000001 4:1.4 #
+-0.016249222750612423576965781535364 1:4.6999998 2:3.2 3:1.6 4:0.2 #
+-0.016249222750612423576965781535364 1:6.6999998 2:2.5 3:5.8000002 4:1.8 #
+0.016249222750612423576965781535364 1:6.4000001 2:2.9000001 3:4.3000002 4:1.3 #
+0.016249222750612423576965781535364 1:6.0999999 2:2.8 3:4 4:1.3 #
+-0.016249222750612423576965781535364 1:6.4000001 2:3.0999999 3:5.5 4:1.8 #
+0.016249222750612423576965781535364 1:6.8000002 2:2.8 3:4.8000002 4:1.4 #
+-0.016249222750612423576965781535364 1:7.0999999 2:3 3:5.9000001 4:2.0999999 #
+0.016249222750612423576965781535364 1:5.5999999 2:3 3:4.0999999 4:1.3 #
+-0.016249222750612423576965781535364 1:4.5999999 2:3.0999999 3:1.5 4:0.2 #
+0.016249222750612423576965781535364 1:6.5999999 2:2.9000001 3:4.5999999 4:1.3 #
+-0.016249222750612423576965781535364 1:7.1999998 2:3.2 3:6 4:1.8 #
+-0.010008109004404408537425297254231 1:6.9000001 2:3.0999999 3:5.4000001 4:2.0999999 #
+0.016249222750612423576965781535364 1:5.6999998 2:3 3:4.1999998 4:1.2 #
+0.016249222750612423576965781535364 1:5.8000002 2:2.7 3:3.9000001 4:1.2 #
+-0.016249222750612423576965781535364 1:4.9000001 2:3 3:1.4 4:0.2 #
+0.016249222750612423576965781535364 1:6.5 2:2.8 3:4.5999999 4:1.5 #
+-0.016249222750612423576965781535364 1:6.0999999 2:2.5999999 3:5.5999999 4:1.4 #
+0.016249222750612423576965781535364 1:5.9000001 2:3 3:4.1999998 4:1.5 #
+-0.016249222750612423576965781535364 1:6.3000002 2:2.5 3:5 4:1.9 #
+0.016249222750612423576965781535364 1:5.6999998 2:2.9000001 3:4.1999998 4:1.3 #
+-0.016249222750612423576965781535364 1:5.8000002 2:2.7 3:5.0999999 4:1.9 #
+0.016249222750612423576965781535364 1:6.0999999 2:3 3:4.5999999 4:1.4 #
+-0.016249222750612423576965781535364 1:5 2:3 3:1.6 4:0.2 #
+0.016249222750612423576965781535364 1:5.5999999 2:3 3:4.5 4:1.5 #
+-0.016249222750612423576965781535364 1:6.5 2:3 3:5.8000002 4:2.2 #
+-0.016249222750612423576965781535364 1:6.4000001 2:2.8 3:5.5999999 4:2.2 #
+0.016249222750612423576965781535364 1:5.6999998 2:2.8 3:4.0999999 4:1.3 #
+0.016249222750612423576965781535364 1:5.8000002 2:2.7 3:4.0999999 4:1 #
+-0.016249222750612423576965781535364 1:4.5999999 2:3.2 3:1.4 4:0.2 #
+-0.016249222750612423576965781535364 1:4.9000001 2:3.0999999 3:1.5 4:0.1 #
+0.016249222750612423576965781535364 1:6.0999999 2:2.9000001 3:4.6999998 4:1.4 #
+0.016249222750612423576965781535364 1:6 2:2.9000001 3:4.5 4:1.5 #
+-0.016249222750612423576965781535364 1:6.8000002 2:3 3:5.5 4:2.0999999 #
+-0.016249222750612423576965781535364 1:7.1999998 2:3 3:5.8000002 4:1.6 #
+0.016249222750612423576965781535364 1:5.5999999 2:2.5 3:3.9000001 4:1.1 #
+0.016249222750612423576965781535364 1:5.8000002 2:2.5999999 3:4 4:1.2 #
+-0.016249222750612423576965781535364 1:5.8000002 2:2.7 3:5.0999999 4:1.9 #
+0.016249222750612423576965781535364 1:6.1999998 2:2.9000001 3:4.3000002 4:1.3 #
+-0.016249222750612423576965781535364 1:5.5999999 2:2.8 3:4.9000001 4:2 #
+0.016249222750612423576965781535364 1:5.4000001 2:3 3:4.5 4:1.5 #
+-0.016249222750612423576965781535364 1:4.8000002 2:3.0999999 3:1.6 4:0.2 #
+0.016249222750612423576965781535364 1:6.0999999 2:2.8 3:4.6999998 4:1.2 #
+-0.016249222750612423576965781535364 1:6.4000001 2:2.8 3:5.5999999 4:2.0999999 #
+0.016249222750612423576965781535364 1:5.5999999 2:2.7 3:4.1999998 4:1.3 #
+-0.016249222750612423576965781535364 1:6.4000001 2:2.7 3:5.3000002 4:1.9 #
+0.016249222750612423576965781535364 1:5.6999998 2:2.8 3:4.5 4:1.3 #
+-0.016249222750612423576965781535364 1:6.3000002 2:2.8 3:5.0999999 4:1.5 #
+-0.016249222750612423576965781535364 1:6.3000002 2:2.9000001 3:5.5999999 4:1.8 #
+0.016249222750612423576965781535364 1:6.3000002 2:2.5 3:4.9000001 4:1.5 #
+0.016249222750612423576965781535364 1:5.5 2:2.5 3:4 4:1.3 #
+-0.016249222750612423576965781535364 1:4.6999998 2:3.2 3:1.3 4:0.2 #
+0.016249222750612423576965781535364 1:6.3000002 2:2.3 3:4.4000001 4:1.3 #
+-0.016249222750612423576965781535364 1:6.3000002 2:2.7 3:4.9000001 4:1.8 #
+0.016249222750612423576965781535364 1:5.5 2:2.5999999 3:4.4000001 4:1.2 #
+-0.016249222750612423576965781535364 1:6.1999998 2:2.8 3:4.8000002 4:1.8 #
+-0.016249222750612423576965781535364 1:5.9000001 2:3 3:5.0999999 4:1.8 #
+0.016249222750612423576965781535364 1:5.5 2:2.3 3:4 4:1.3 #
+0.016249222750612423576965781535364 1:6.1999998 2:2.2 3:4.5 4:1.5 #
+-0.016249222750612423576965781535364 1:4.9000001 2:3.0999999 3:1.5 4:0.2 #
+0.016249222750612423576965781535364 1:6 2:2.2 3:4 4:1 #
+-0.016249222750612423576965781535364 1:6.5 2:3 3:5.1999998 4:2 #
diff --git a/data/iris/svm_light/virginica-v-rest.shuf.data.model b/data/iris/svm_light/virginica-v-rest.shuf.data.model
new file mode 100644
index 0000000..ce63e74
--- /dev/null
+++ b/data/iris/svm_light/virginica-v-rest.shuf.data.model
@@ -0,0 +1,94 @@
+SVM-light Version V6.02
+0 # kernel type
+3 # kernel parameter -d
+1 # kernel parameter -g
+1 # kernel parameter -s
+1 # kernel parameter -r
+empty# kernel parameter -u
+4 # highest feature index
+150 # number of training documents
+84 # number of support vectors plus 1
+5.1687631 # threshold b, each following line is a SV (starting with alpha*y)
+-0.016249222750612440924200541303435 1:5.6999998 2:2.9000001 3:4.1999998 4:1.3 #
+0.016249222750612440924200541303435 1:6.6999998 2:3.3 3:5.6999998 4:2.5 #
+-0.016249222750612440924200541303435 1:6.6999998 2:3 3:5 4:1.7 #
+0.016249222750612440924200541303435 1:4.9000001 2:2.5 3:4.5 4:1.7 #
+-0.016249222750612440924200541303435 1:6 2:2.7 3:5.0999999 4:1.6 #
+0.016249222750612440924200541303435 1:6 2:3 3:4.8000002 4:1.8 #
+-0.016249222750612440924200541303435 1:6.3000002 2:2.5 3:4.9000001 4:1.5 #
+0.016249222750612440924200541303435 1:6.1999998 2:2.8 3:4.8000002 4:1.8 #
+-0.016249222750612440924200541303435 1:5.9000001 2:3.2 3:4.8000002 4:1.8 #
+0.016249222750612440924200541303435 1:6.3000002 2:2.8 3:5.0999999 4:1.5 #
+-0.016249222750612440924200541303435 1:6.9000001 2:3.0999999 3:4.9000001 4:1.5 #
+0.016249222750612440924200541303435 1:6.0999999 2:3 3:4.9000001 4:1.8 #
+-0.016249222750612440924200541303435 1:6.1999998 2:2.2 3:4.5 4:1.5 #
+0.016249222750612440924200541303435 1:6.3000002 2:2.7 3:4.9000001 4:1.8 #
+-0.016249222750612440924200541303435 1:6.3000002 2:3.3 3:4.6999998 4:1.6 #
+0.016249222750612440924200541303435 1:6 2:2.2 3:5 4:1.5 #
+-0.016249222750612440924200541303435 1:6.0999999 2:2.9000001 3:4.6999998 4:1.4 #
+0.016249222750612440924200541303435 1:6.5 2:3.2 3:5.0999999 4:2 #
+-0.016249222750612440924200541303435 1:6.8000002 2:2.8 3:4.8000002 4:1.4 #
+0.016249222750612440924200541303435 1:5.9000001 2:3 3:5.0999999 4:1.8 #
+-0.016249222750612440924200541303435 1:5.4000001 2:3 3:4.5 4:1.5 #
+0.016249222750612440924200541303435 1:6.3000002 2:2.5 3:5 4:1.9 #
+-0.016249222750612440924200541303435 1:6.5 2:2.8 3:4.5999999 4:1.5 #
+0.016249222750612440924200541303435 1:5.5999999 2:2.8 3:4.9000001 4:2 #
+-0.016249222750612440924200541303435 1:5.5999999 2:3 3:4.5 4:1.5 #
+0.016249222750612440924200541303435 1:6.5 2:3 3:5.1999998 4:2 #
+-0.016249222750612440924200541303435 1:6.6999998 2:3.0999999 3:4.6999998 4:1.5 #
+0.016249222750612440924200541303435 1:5.8000002 2:2.7 3:5.0999999 4:1.9 #
+-0.016249222750612440924200541303435 1:6 2:2.9000001 3:4.5 4:1.5 #
+0.016249222750612440924200541303435 1:6.9000001 2:3.0999999 3:5.0999999 4:2.3 #
+-0.016249222750612440924200541303435 1:6.0999999 2:3 3:4.5999999 4:1.4 #
+0.016249222750612440924200541303435 1:5.8000002 2:2.7 3:5.0999999 4:1.9 #
+-0.016249222750612440924200541303435 1:6.0999999 2:2.8 3:4.6999998 4:1.2 #
+0.016249222750612440924200541303435 1:6.0999999 2:2.5999999 3:5.5999999 4:1.4 #
+-0.016249222750612440924200541303435 1:6 2:3.4000001 3:4.5 4:1.6 #
+0.016249222750612440924200541303435 1:5.6999998 2:2.5 3:5 4:2 #
+-0.016249222750612440924200541303435 1:6.3000002 2:2.3 3:4.4000001 4:1.3 #
+0.016249222750612440924200541303435 1:6.4000001 2:3.0999999 3:5.5 4:1.8 #
+-0.016249222750612440924200541303435 1:7 2:3.2 3:4.6999998 4:1.4 #
+0.016249222750612440924200541303435 1:6.4000001 2:2.7 3:5.3000002 4:1.9 #
+-0.016249222750612440924200541303435 1:5.6999998 2:2.8 3:4.5 4:1.3 #
+0.016249222750612440924200541303435 1:6.5 2:3 3:5.5 4:1.8 #
+-0.016249222750612440924200541303435 1:6.5999999 2:2.9000001 3:4.5999999 4:1.3 #
+0.016249222750612440924200541303435 1:6.6999998 2:3 3:5.1999998 4:2.3 #
+-0.016249222750612440924200541303435 1:6.4000001 2:3.2 3:4.5 4:1.5 #
+0.016249222750612440924200541303435 1:7.1999998 2:3 3:5.8000002 4:1.6 #
+-0.016249222750612440924200541303435 1:6.5999999 2:3 3:4.4000001 4:1.4 #
+0.016249222750612440924200541303435 1:5.8000002 2:2.8 3:5.0999999 4:2.4000001 #
+-0.016249222750612440924200541303435 1:5.5 2:2.5999999 3:4.4000001 4:1.2 #
+0.016249222750612440924200541303435 1:6.9000001 2:3.0999999 3:5.4000001 4:2.0999999 #
+-0.016249222750612440924200541303435 1:6.6999998 2:3.0999999 3:4.4000001 4:1.4 #
+0.016249222750612440924200541303435 1:6.3000002 2:2.9000001 3:5.5999999 4:1.8 #
+-0.016249222750612440924200541303435 1:5.9000001 2:3 3:4.1999998 4:1.5 #
+0.016249222750612440924200541303435 1:6.4000001 2:3.2 3:5.3000002 4:2.3 #
+-0.016249222750612440924200541303435 1:6.4000001 2:2.9000001 3:4.3000002 4:1.3 #
+0.016249222750612440924200541303435 1:6.1999998 2:3.4000001 3:5.4000001 4:2.3 #
+-0.016249222750612440924200541303435 1:6.1999998 2:2.9000001 3:4.3000002 4:1.3 #
+0.016249222750612440924200541303435 1:6.8000002 2:3 3:5.5 4:2.0999999 #
+-0.016249222750612440924200541303435 1:5.5999999 2:2.7 3:4.1999998 4:1.3 #
+0.016249222750612440924200541303435 1:6.4000001 2:2.8 3:5.5999999 4:2.0999999 #
+-0.016249222750612440924200541303435 1:5.6999998 2:3 3:4.1999998 4:1.2 #
+0.016249222750612440924200541303435 1:6.6999998 2:2.5 3:5.8000002 4:1.8 #
+-0.016249222750612440924200541303435 1:5.6999998 2:2.8 3:4.0999999 4:1.3 #
+0.016249222750612440924200541303435 1:6.4000001 2:2.8 3:5.5999999 4:2.2 #
+-0.016249222750612440924200541303435 1:5.5999999 2:3 3:4.0999999 4:1.3 #
+0.016249222750612440924200541303435 1:6.6999998 2:3.3 3:5.6999998 4:2.0999999 #
+-0.016249222750612440924200541303435 1:6.0999999 2:2.8 3:4 4:1.3 #
+0.016249222750612440924200541303435 1:6.3000002 2:3.4000001 3:5.5999999 4:2.4000001 #
+-0.016249222750612440924200541303435 1:5.5 2:2.3 3:4 4:1.3 #
+0.016249222750612440924200541303435 1:6.6999998 2:3.0999999 3:5.5999999 4:2.4000001 #
+-0.016249222750612440924200541303435 1:5.5 2:2.5 3:4 4:1.3 #
+0.016249222750612440924200541303435 1:6.5 2:3 3:5.8000002 4:2.2 #
+-0.016249222750612440924200541303435 1:5.8000002 2:2.5999999 3:4 4:1.2 #
+0.016249222750612440924200541303435 1:6.9000001 2:3.2 3:5.6999998 4:2.3 #
+-0.016249222750612440924200541303435 1:5.8000002 2:2.7 3:4.0999999 4:1 #
+0.016249222750612440924200541303435 1:7.1999998 2:3.2 3:6 4:1.8 #
+-0.016249222750612440924200541303435 1:5.8000002 2:2.7 3:3.9000001 4:1.2 #
+0.016249222750612440924200541303435 1:7.0999999 2:3 3:5.9000001 4:2.0999999 #
+-0.016249222750612440924200541303435 1:6 2:2.2 3:4 4:1 #
+0.016249222750612440924200541303435 1:6.8000002 2:3.2 3:5.9000001 4:2.3 #
+-0.013385392103451521084167552544386 1:5.1999998 2:2.7 3:3.9000001 4:1.4 #
+7.3506179476545696616085479035974e-08 1:7.4000001 2:2.8 3:6.0999999 4:1.9 #
+0.013385318597272516383256402150437 1:6.3000002 2:3.3 3:6 4:2.5 #
diff --git a/data/iris/svm_light/virginica.learnout b/data/iris/svm_light/virginica.learnout
new file mode 100644
index 0000000..2dee3bc
--- /dev/null
+++ b/data/iris/svm_light/virginica.learnout
@@ -0,0 +1,18 @@
+Scanning examples...done
+Reading examples into memory...100..OK. (150 examples read)
+Setting default regularization parameter C=0.0162
+Optimizing..............................................done. (47 iterations)
+Optimization finished (9 misclassified, maxdiff=0.00047).
+Runtime in cpu-seconds: 0.00
+Number of SV: 83 (including 80 at upper bound)
+L1 loss: loss=45.24874
+Norm of weight vector: |w|=0.76906
+Norm of longest example vector: |x|=11.11126
+Estimated VCdim of classifier: VCdim<=62.16794
+Computing XiAlpha-estimates...done
+Runtime for XiAlpha-estimates in cpu-seconds: 0.00
+XiAlpha-estimate of the error: error<=54.67% (rho=1.00,depth=0)
+XiAlpha-estimate of the recall: recall=>18.00% (rho=1.00,depth=0)
+XiAlpha-estimate of the precision: precision=>18.00% (rho=1.00,depth=0)
+Number of kernel evaluations: 1939
+Writing model file...done
diff --git a/data/iris/svm_light/virginica.model b/data/iris/svm_light/virginica.model
new file mode 100644
index 0000000..ce63e74
--- /dev/null
+++ b/data/iris/svm_light/virginica.model
@@ -0,0 +1,94 @@
+SVM-light Version V6.02
+0 # kernel type
+3 # kernel parameter -d
+1 # kernel parameter -g
+1 # kernel parameter -s
+1 # kernel parameter -r
+empty# kernel parameter -u
+4 # highest feature index
+150 # number of training documents
+84 # number of support vectors plus 1
+5.1687631 # threshold b, each following line is a SV (starting with alpha*y)
+-0.016249222750612440924200541303435 1:5.6999998 2:2.9000001 3:4.1999998 4:1.3 #
+0.016249222750612440924200541303435 1:6.6999998 2:3.3 3:5.6999998 4:2.5 #
+-0.016249222750612440924200541303435 1:6.6999998 2:3 3:5 4:1.7 #
+0.016249222750612440924200541303435 1:4.9000001 2:2.5 3:4.5 4:1.7 #
+-0.016249222750612440924200541303435 1:6 2:2.7 3:5.0999999 4:1.6 #
+0.016249222750612440924200541303435 1:6 2:3 3:4.8000002 4:1.8 #
+-0.016249222750612440924200541303435 1:6.3000002 2:2.5 3:4.9000001 4:1.5 #
+0.016249222750612440924200541303435 1:6.1999998 2:2.8 3:4.8000002 4:1.8 #
+-0.016249222750612440924200541303435 1:5.9000001 2:3.2 3:4.8000002 4:1.8 #
+0.016249222750612440924200541303435 1:6.3000002 2:2.8 3:5.0999999 4:1.5 #
+-0.016249222750612440924200541303435 1:6.9000001 2:3.0999999 3:4.9000001 4:1.5 #
+0.016249222750612440924200541303435 1:6.0999999 2:3 3:4.9000001 4:1.8 #
+-0.016249222750612440924200541303435 1:6.1999998 2:2.2 3:4.5 4:1.5 #
+0.016249222750612440924200541303435 1:6.3000002 2:2.7 3:4.9000001 4:1.8 #
+-0.016249222750612440924200541303435 1:6.3000002 2:3.3 3:4.6999998 4:1.6 #
+0.016249222750612440924200541303435 1:6 2:2.2 3:5 4:1.5 #
+-0.016249222750612440924200541303435 1:6.0999999 2:2.9000001 3:4.6999998 4:1.4 #
+0.016249222750612440924200541303435 1:6.5 2:3.2 3:5.0999999 4:2 #
+-0.016249222750612440924200541303435 1:6.8000002 2:2.8 3:4.8000002 4:1.4 #
+0.016249222750612440924200541303435 1:5.9000001 2:3 3:5.0999999 4:1.8 #
+-0.016249222750612440924200541303435 1:5.4000001 2:3 3:4.5 4:1.5 #
+0.016249222750612440924200541303435 1:6.3000002 2:2.5 3:5 4:1.9 #
+-0.016249222750612440924200541303435 1:6.5 2:2.8 3:4.5999999 4:1.5 #
+0.016249222750612440924200541303435 1:5.5999999 2:2.8 3:4.9000001 4:2 #
+-0.016249222750612440924200541303435 1:5.5999999 2:3 3:4.5 4:1.5 #
+0.016249222750612440924200541303435 1:6.5 2:3 3:5.1999998 4:2 #
+-0.016249222750612440924200541303435 1:6.6999998 2:3.0999999 3:4.6999998 4:1.5 #
+0.016249222750612440924200541303435 1:5.8000002 2:2.7 3:5.0999999 4:1.9 #
+-0.016249222750612440924200541303435 1:6 2:2.9000001 3:4.5 4:1.5 #
+0.016249222750612440924200541303435 1:6.9000001 2:3.0999999 3:5.0999999 4:2.3 #
+-0.016249222750612440924200541303435 1:6.0999999 2:3 3:4.5999999 4:1.4 #
+0.016249222750612440924200541303435 1:5.8000002 2:2.7 3:5.0999999 4:1.9 #
+-0.016249222750612440924200541303435 1:6.0999999 2:2.8 3:4.6999998 4:1.2 #
+0.016249222750612440924200541303435 1:6.0999999 2:2.5999999 3:5.5999999 4:1.4 #
+-0.016249222750612440924200541303435 1:6 2:3.4000001 3:4.5 4:1.6 #
+0.016249222750612440924200541303435 1:5.6999998 2:2.5 3:5 4:2 #
+-0.016249222750612440924200541303435 1:6.3000002 2:2.3 3:4.4000001 4:1.3 #
+0.016249222750612440924200541303435 1:6.4000001 2:3.0999999 3:5.5 4:1.8 #
+-0.016249222750612440924200541303435 1:7 2:3.2 3:4.6999998 4:1.4 #
+0.016249222750612440924200541303435 1:6.4000001 2:2.7 3:5.3000002 4:1.9 #
+-0.016249222750612440924200541303435 1:5.6999998 2:2.8 3:4.5 4:1.3 #
+0.016249222750612440924200541303435 1:6.5 2:3 3:5.5 4:1.8 #
+-0.016249222750612440924200541303435 1:6.5999999 2:2.9000001 3:4.5999999 4:1.3 #
+0.016249222750612440924200541303435 1:6.6999998 2:3 3:5.1999998 4:2.3 #
+-0.016249222750612440924200541303435 1:6.4000001 2:3.2 3:4.5 4:1.5 #
+0.016249222750612440924200541303435 1:7.1999998 2:3 3:5.8000002 4:1.6 #
+-0.016249222750612440924200541303435 1:6.5999999 2:3 3:4.4000001 4:1.4 #
+0.016249222750612440924200541303435 1:5.8000002 2:2.8 3:5.0999999 4:2.4000001 #
+-0.016249222750612440924200541303435 1:5.5 2:2.5999999 3:4.4000001 4:1.2 #
+0.016249222750612440924200541303435 1:6.9000001 2:3.0999999 3:5.4000001 4:2.0999999 #
+-0.016249222750612440924200541303435 1:6.6999998 2:3.0999999 3:4.4000001 4:1.4 #
+0.016249222750612440924200541303435 1:6.3000002 2:2.9000001 3:5.5999999 4:1.8 #
+-0.016249222750612440924200541303435 1:5.9000001 2:3 3:4.1999998 4:1.5 #
+0.016249222750612440924200541303435 1:6.4000001 2:3.2 3:5.3000002 4:2.3 #
+-0.016249222750612440924200541303435 1:6.4000001 2:2.9000001 3:4.3000002 4:1.3 #
+0.016249222750612440924200541303435 1:6.1999998 2:3.4000001 3:5.4000001 4:2.3 #
+-0.016249222750612440924200541303435 1:6.1999998 2:2.9000001 3:4.3000002 4:1.3 #
+0.016249222750612440924200541303435 1:6.8000002 2:3 3:5.5 4:2.0999999 #
+-0.016249222750612440924200541303435 1:5.5999999 2:2.7 3:4.1999998 4:1.3 #
+0.016249222750612440924200541303435 1:6.4000001 2:2.8 3:5.5999999 4:2.0999999 #
+-0.016249222750612440924200541303435 1:5.6999998 2:3 3:4.1999998 4:1.2 #
+0.016249222750612440924200541303435 1:6.6999998 2:2.5 3:5.8000002 4:1.8 #
+-0.016249222750612440924200541303435 1:5.6999998 2:2.8 3:4.0999999 4:1.3 #
+0.016249222750612440924200541303435 1:6.4000001 2:2.8 3:5.5999999 4:2.2 #
+-0.016249222750612440924200541303435 1:5.5999999 2:3 3:4.0999999 4:1.3 #
+0.016249222750612440924200541303435 1:6.6999998 2:3.3 3:5.6999998 4:2.0999999 #
+-0.016249222750612440924200541303435 1:6.0999999 2:2.8 3:4 4:1.3 #
+0.016249222750612440924200541303435 1:6.3000002 2:3.4000001 3:5.5999999 4:2.4000001 #
+-0.016249222750612440924200541303435 1:5.5 2:2.3 3:4 4:1.3 #
+0.016249222750612440924200541303435 1:6.6999998 2:3.0999999 3:5.5999999 4:2.4000001 #
+-0.016249222750612440924200541303435 1:5.5 2:2.5 3:4 4:1.3 #
+0.016249222750612440924200541303435 1:6.5 2:3 3:5.8000002 4:2.2 #
+-0.016249222750612440924200541303435 1:5.8000002 2:2.5999999 3:4 4:1.2 #
+0.016249222750612440924200541303435 1:6.9000001 2:3.2 3:5.6999998 4:2.3 #
+-0.016249222750612440924200541303435 1:5.8000002 2:2.7 3:4.0999999 4:1 #
+0.016249222750612440924200541303435 1:7.1999998 2:3.2 3:6 4:1.8 #
+-0.016249222750612440924200541303435 1:5.8000002 2:2.7 3:3.9000001 4:1.2 #
+0.016249222750612440924200541303435 1:7.0999999 2:3 3:5.9000001 4:2.0999999 #
+-0.016249222750612440924200541303435 1:6 2:2.2 3:4 4:1 #
+0.016249222750612440924200541303435 1:6.8000002 2:3.2 3:5.9000001 4:2.3 #
+-0.013385392103451521084167552544386 1:5.1999998 2:2.7 3:3.9000001 4:1.4 #
+7.3506179476545696616085479035974e-08 1:7.4000001 2:2.8 3:6.0999999 4:1.9 #
+0.013385318597272516383256402150437 1:6.3000002 2:3.3 3:6 4:2.5 #