1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
|
class SparseVector < Hash
def initialize arg=nil
super
self.default = 0
if arg.is_a? Array
from_a arg
end
end
def from_a a
a.each_with_index { |i,j| self[j] = i }
end
def self.from_a a
v = SparseVector.new
v.from_a a
return v
end
def from_h h
h.each_pair { |k,v| self[k] = v }
end
def self.from_h h
v = SparseVector.new
v.from_h h
return v
end
def from_s s
from_h eval(s)
end
def self.from_s s
v = SparseVector.new
v.from_s s
return v
end
def to_kv sep='=', join=' '
a = []
self.each_pair { |k,v|
a << "#{k}#{sep}#{v}"
}
return a.join join
end
def from_kv s
s.split.each { |i|
k,v = i.split('=')
self[k] = v.to_f
}
end
def self.from_kv s
v = SparseVector.new
v.from_kv s
return v
end
def from_file fn, sep='='
f = ReadFile.new(fn)
while line = f.gets
key, value = line.strip.split sep
value = value.to_f
self[key] = value
end
end
def self.from_file fn, sep='='
v = SparseVector.new
v.from_file fn, sep
return v
end
def join_keys other
self.keys + other.keys
end
def sum
self.values.inject(:+)
end
def approx_eql? other, p=10**-10
return false if !other
return false if other.size!=self.size
return false if other.keys.sort!=self.keys.sort
self.keys.each { |k|
return false if (self[k]-other[k]).abs>p
}
return true
end
def average
self.sum/self.size.to_f
end
def variance
avg = self.average
var = 0.0
self.values.each { |i| var += (avg - i)**2 }
return var
end
def stddev
Math.sqrt self.variance
end
def dot other
sum = 0.0
self.each_pair { |k,v| sum += v * other[k] }
return sum
end
def zeros n
(0).upto(n-1) { |i| self[i] = 0.0 }
end
def magnitude
Math.sqrt self.values.inject { |sum,i| sum+i**2 }
end
def cosinus_sim other
self.dot(other)/(self.magnitude*other.magnitude)
end
def euclidian_dist other
dims = [self.keys, other.keys].flatten.uniq
sum = 0.0
dims.each { |d| sum += (self[d] - other[d])**2 }
return Math.sqrt(sum)
end
def + other
new = SparseVector.new
join_keys(other).each { |k|
new[k] = self[k]+other[k]
}
return new
end
def - other
new = SparseVector.new
join_keys(other).each { |k|
new[k] = self[k]-other[k]
}
return new
end
def * scalar
raise ArgumentError, "Arg is not numeric #{scalar}" unless scalar.is_a? Numeric
new = SparseVector.new
self.keys.each { |k|
new[k] = self[k] * scalar
}
return new
end
def self.mean a
mean = SparseVector.new
a.each { |i|
i.each_pair { |k,v|
mean[k] += v
}
}
n = a.size.to_f
mean.each_pair { |k,v| mean[k] = v/n }
return mean
end
end
|