summaryrefslogtreecommitdiff
path: root/lib/nlp_ruby/SparseVector.rb
blob: 3096412c8a2cb81016ceb96227400b90ef2208be (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
class SparseVector < Hash

  def initialize arg=nil
    super
    self.default = 0
    if arg.is_a? Array
      from_a arg
    end
  end

  def from_a a
    a.each_with_index { |i,j| self[j] = i }
  end

  def self.from_a a
    v = SparseVector.new
    v.from_a a
    return v
  end

  def from_h h
    h.each_pair { |k,v| self[k] = v }
  end

  def self.from_h h
    v = SparseVector.new
    v.from_h h
    return v
  end

  def from_s s
    from_h eval(s)
  end

  def self.from_s s
    v = SparseVector.new
    v.from_s s
    return v
  end

  def to_kv sep='=', join=' '
    a = []
    self.each_pair { |k,v|
      a << "#{k}#{sep}#{v}"
    }
    return a.join join
  end

  def from_kv s
    s.split.each { |i|
      k,v = i.split('=')
      self[k] = v.to_f
    }
  end

  def self.from_kv s
    v = SparseVector.new
    v.from_kv s
    return v
  end

  def from_file fn, sep='='
    f = ReadFile.new(fn)
    while line = f.gets
      key, value = line.strip.split sep
      value = value.to_f
      self[key] = value
    end
  end

  def self.from_file fn, sep='='
    v = SparseVector.new
    v.from_file fn, sep
    return v
  end

  def join_keys other
    self.keys + other.keys
  end

  def sum
    self.values.inject(:+)
  end

  def approx_eql? other, p=10**-10
    return false if !other
    return false if other.size!=self.size
    return false if other.keys.sort!=self.keys.sort
    self.keys.each { |k|
      return false if (self[k]-other[k]).abs>p
    }
    return true
  end

  def average
    self.sum/self.size.to_f
  end

  def variance
    avg = self.average
    var = 0.0
    self.values.each { |i| var += (avg - i)**2 }
    return var
  end

  def stddev
    Math.sqrt self.variance
  end

  def dot other
    sum = 0.0
    self.each_pair { |k,v| sum += v * other[k] }
    return sum
  end

  def zeros n
    (0).upto(n-1) { |i| self[i] = 0.0 }
  end

  def magnitude
    Math.sqrt self.values.inject { |sum,i| sum+i**2 }
  end

  def cosinus_sim other
    self.dot(other)/(self.magnitude*other.magnitude)
  end

  def euclidian_dist other
    dims = [self.keys, other.keys].flatten.uniq
    sum = 0.0
    dims.each { |d| sum += (self[d] - other[d])**2 }
    return Math.sqrt(sum)
  end

  def + other
    new = SparseVector.new
    join_keys(other).each { |k|
      new[k] = self[k]+other[k]
    }
    return new
  end

  def - other
    new = SparseVector.new
    join_keys(other).each { |k|
      new[k] = self[k]-other[k]
    }
    return new
  end

  def * scalar
    raise ArgumentError, "Arg is not numeric #{scalar}" unless scalar.is_a? Numeric
    new = SparseVector.new
    self.keys.each { |k|
      new[k] = self[k] * scalar
    }
    return new
  end

  def self.mean a
    mean = SparseVector.new
    a.each { |i|
      i.each_pair { |k,v|
        mean[k] += v
      }
    }
    n = a.size.to_f
    mean.each_pair { |k,v| mean[k] = v/n }
    return mean
  end
end