summaryrefslogtreecommitdiff
path: root/lib/nlp_ruby/SparseVector.rb
blob: a4e2bce57c078f95d0143e9e26746b77e8c6c8c2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
class SparseVector < Hash

  def initialize
    super
    self.default = 0
  end

  def from_a a
    a.each_with_index { |i,j| self[j] = i }
  end

  def from_h h
    h.each_pair { |k,v| self[k] = v }
  end

  def from_s s
    from_h eval(s)
  end

  def sum
    self.values.inject(:+)
  end

  def average
    self.sum/self.size.to_f
  end

  def variance
    avg = self.average
    var = 0.0
    self.values.each { |i| var += (avg - i)**2 }
    return var
  end

  def stddev
    Math.sqrt self.variance
  end

  def dot other
    sum = 0.0
    self.each_pair { |k,v| sum += v * other[k] }
    return sum
  end

  def magnitude
    Math.sqrt self.values.inject { |sum,i| sum+i**2 }
  end

  def cosinus_sim other
    self.dot(other)/(self.magnitude*other.magnitude)
  end

  def euclidian_dist other
    dims = [self.keys, other.keys].flatten.uniq
    sum = 0.0
    dims.each { |d| sum += (self[d] - other[d])**2 }
    return Math.sqrt(sum)
  end

  # FIXME
  def from_kv_file fn, sep=' '
    f = ReadFile.new(fn)
    while line = f.gets
      key, value = line.strip.split sep
      value = value.to_f
      self[key] = value
    end
  end
  
  # FIXME
  def to_kv sep='='
    a = []
    self.each_pair { |k,v|
      a << "#{k}#{sep}#{v}"
    }
    return a.join ' '
  end

  def join_keys other
    self.keys + other.keys
  end

  def + other
    new = SparseVector.new
    join_keys(other).each { |k|
      new[k] = self[k]+other[k]
    }
    return new
  end

  def - other
    new = SparseVector.new
    join_keys(other).each { |k|
      new[k] = self[k]-other[k]
    }
    return new
  end

  def * scalar
    raise ArgumentError, "Arg is not numeric #{scalar}" unless scalar.is_a? Numeric
    new = SparseVector.new
    self.keys.each { |k|
      new[k] = self[k] * scalar
    }
    return new
  end
end

def mean_sparse_vector array_of_vectors
  mean = SparseVector.new
  array_of_vectors.each { |i|
    i.each_pair { |k,v|
      mean[k] += v
    }
  }
  n = array_of_vectors.size.to_f
  mean.each_pair { |k,v| mean[k] = v/n }
  return mean
end