1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
|
import gzip
import re
from nlp_tools.hypergraph import Hypergraph
import itertools
import logging
from collections import defaultdict
import os
class Rule:
MOSES_SYMBOL = '[X]'
def __init__(self, rule_id, symbol, src, tgt, coindexing):
self.rule_id = rule_id
self.symbol = symbol
self.src = src
self.tgt = tgt
self.coindexing = coindexing
self.degree = len(self.coindexing)
@classmethod
def from_moses(cls, rule_id, rule_table_line):
nl, mrl, scores, alignments, counts = re.split(r'\ ?\|\|\|\ ?',
rule_table_line.strip())
nl = nl.split()[:-1]
nl = [cls.MOSES_SYMBOL if t == '[X][X]' else t for t in nl]
mrl = mrl.split()[:-1]
mrl = [cls.MOSES_SYMBOL if t == '[X][X]' else t for t in mrl]
coindexing = []
for pair in alignments.split():
i_s, i_t = pair.split('-')
coindexing.append((int(i_s), int(i_t)))
return Rule(rule_id, cls.MOSES_SYMBOL, nl, mrl, coindexing)
@classmethod
def glue(cls, rule_id):
return Rule(rule_id, cls.MOSES_SYMBOL, [cls.MOSES_SYMBOL, cls.MOSES_SYMBOL],
[cls.MOSES_SYMBOL, cls.MOSES_SYMBOL], [(0,0), (1,1)])
def __eq__(self, other):
return other.__class__ == self.__class__ and self.rule_id == other.rule_id
def __hash__(self):
return self.rule_id
def __repr__(self):
return 'Rule<(%d) %s -> %s : %s>' % (self.rule_id, self.symbol, self.src,
self.tgt)
class NLReweighter:
def __init__(self, config):
self.config = config
def run(self):
rules = self.load_rule_table()
glue = Rule.glue(len(rules))
all_counts = defaultdict(lambda: 0)
successful_counts = defaultdict(lambda: 0)
with open('%s/unlabeled.nl' % self.config.experiment_dir) as ul_f:
for line in ul_f:
toks = line.strip().split()
chart = self.parse(toks, rules, glue)
if not chart:
continue
self.collect_all_counts(all_counts, chart)
self.collect_successful_counts(successful_counts, chart, toks)
if not self.config.ul_only:
with open('%s/train.nl' % self.config.experiment_dir) as t_f:
for line in t_f:
toks = line.strip().split()
chart = self.parse(toks, rules, glue)
# TODO is this an OOV issue?
if not chart:
continue
self.collect_all_counts(all_counts, chart)
self.collect_successful_counts(successful_counts, chart, toks)
#self.write_updated_model(all_counts)
self.write_updated_model(successful_counts)
def load_rule_table(self):
rule_table_path = '%s/model/rule-table.gz' % self.config.experiment_dir
rules = {}
with gzip.open(rule_table_path) as rule_table_f:
for line in rule_table_f.readlines():
rule = Rule.from_moses(len(rules), line)
rules[rule.rule_id] = rule
return rules
def write_updated_model(self, counts):
old_rule_table_path = '%s/model/rule-table.gz' % self.config.experiment_dir
new_rule_table_path = '%s/model/rule-table-new.gz' % self.config.experiment_dir
counter = 0
with gzip.open(old_rule_table_path) as old_rule_table_f:
with gzip.open(new_rule_table_path, 'w') as new_rule_table_f:
for line in old_rule_table_f:
nl, mrl, scores, alignments, rule_counts = re.split(r'\ ?\|\|\|\ ?',
line.strip())
scores = '%s %f' % (scores, counts[counter])
newline = ' ||| '.join([nl, mrl, scores, alignments, rule_counts])
newline = re.sub(r'\s+', ' ', newline)
print >>new_rule_table_f, newline
counter += 1
old_config_path = '%s/model/moses.ini' % self.config.experiment_dir
new_config_path = '%s/model/moses-new.ini' % self.config.experiment_dir
with open(old_config_path) as old_config_f:
with open(new_config_path, 'w') as new_config_f:
for line in old_config_f:
if line[-14:-1] == 'rule-table.gz':
line = line[:6] + '6' + line[7:]
#line[6] = '6'
print >>new_config_f, line,
if line == '[weight-t]\n':
print >>new_config_f, '0.20'
os.rename(new_rule_table_path, old_rule_table_path)
os.rename(new_config_path, old_config_path)
def parse(self, sent, grammar, glue):
chart = dict()
for span in range(1, len(sent)+1):
for start in range(len(sent)+1-span):
chart[start,span] = list()
for rule in grammar.values():
matches = self.match(sent, rule, start, span, chart)
chart[start,span] += matches
for i in range(1, len(sent)):
if chart[0,i] and chart[i,len(sent)-i]:
psets = [(c1, c2) for c1 in chart[0,i] for c2 in chart[i,len(sent)-i]]
chart[0,len(sent)].append(Hypergraph(glue, psets))
if not chart[0,len(sent)]:
#logging.debug('failed to parse')
return None
else:
#logging.debug('parse OK!')
return chart
def match(self, sent, rule, start, span, chart):
if rule.degree == 0:
if span != len(rule.src):
return []
if sent[start:start+span] != rule.src:
return []
return [Hypergraph(rule, [])]
elif rule.degree == 1:
nt_start = start + rule.coindexing[0][0]
nt_span = span - len(rule.src) + 1
if nt_span <= 0:
return []
if sent[start:nt_start] != rule.src[0:rule.coindexing[0][0]]:
return []
if sent[nt_start+nt_span:start+span] != rule.src[rule.coindexing[0][0]+1:]:
return []
pointer_sets = [i for i in chart[nt_start, nt_span] if i.label.symbol ==
rule.src[rule.coindexing[0][0]]]
## if not chart[nt_start, nt_span]:
## return []
if not pointer_sets:
return []
return [Hypergraph(rule, [(i,) for i in pointer_sets])]
elif rule.degree == 2:
matches = []
before_dist = rule.coindexing[0][0]
between_dist = rule.coindexing[1][0] - rule.coindexing[0][0] - 1
before_2_dist = rule.coindexing[1][0]
nt_total_span = span - len(rule.src) + 2
if nt_total_span <= 0:
return []
nt1_start = start + before_dist
for nt1_span in range(1,nt_total_span):
nt2_start = nt1_start + nt1_span + between_dist
nt2_span = nt_total_span - nt1_span
if sent[start:nt1_start] != rule.src[0:before_dist]:
continue
if sent[nt1_start+nt1_span:nt2_start] != rule.src[before_dist+1:before_2_dist]:
continue
if sent[nt2_start+nt2_span:start+span] != rule.src[before_2_dist+1:]:
continue
pointer_sets_1 = [i for i in chart[nt1_start,nt1_span] if i.label.symbol ==
rule.src[rule.coindexing[0][0]]]
pointer_sets_2 = [i for i in chart[nt2_start,nt2_span] if i.label.symbol ==
rule.src[rule.coindexing[1][0]]]
if not (pointer_sets_1 and pointer_sets_2):
continue
matches.append(Hypergraph(rule, list(itertools.product(pointer_sets_1,
pointer_sets_2))))
#matches.append(rule.rule_id)
return matches
assert False
def collect_all_counts(self, counts, chart):
for cell in chart.values():
for node in cell:
counts[node.label.rule_id] += 1
def collect_successful_counts(self, counts, chart, sent):
used = set()
for cell in chart[0, len(sent)]:
self.mark_used(used, cell)
for cell in chart.values():
for node in cell:
if node in used:
counts[node.label.rule_id] += 1
def mark_used(self, used, cell):
for edge in cell.edges:
for ccell in edge:
if ccell not in used:
self.mark_used(used, ccell)
used.add(cell)
|