summaryrefslogtreecommitdiff
path: root/nlp_tools/dict_utils.py
diff options
context:
space:
mode:
authorJacob <andqso@gmail.com>2013-07-28 10:29:17 +0100
committerJacob <andqso@gmail.com>2013-07-28 10:29:17 +0100
commit4f818256a13a61cbedee919a07637b8ed225783e (patch)
tree21f35b7d44556969c541fdc98cc6cb73df8160cf /nlp_tools/dict_utils.py
parenta0c270b926b7fb1f981281c0ad8ae085272364fb (diff)
remove nlp_tools
Diffstat (limited to 'nlp_tools/dict_utils.py')
-rw-r--r--nlp_tools/dict_utils.py101
1 files changed, 0 insertions, 101 deletions
diff --git a/nlp_tools/dict_utils.py b/nlp_tools/dict_utils.py
deleted file mode 100644
index 8b9b94b..0000000
--- a/nlp_tools/dict_utils.py
+++ /dev/null
@@ -1,101 +0,0 @@
-"""
-Utilities for doing math on sparse vectors indexed by arbitrary objects.
-(These will usually be feature vectors.)
-"""
-
-import math_utils as mu
-import math
-
-def d_elt_op_keep(op, zero, args):
- """
- Applies op to arguments elementwise, keeping entries that don't occur in
- every argument (i.e. behaves like a sum).
- """
- ret = {}
- for d in args:
- for key in d:
- if key not in ret:
- ret[key] = d[key]
- else:
- ret[key] = op([ret[key], d[key]])
- for key in ret.keys():
- if ret[key] == zero:
- del ret[key]
- return ret
-
-def d_elt_op_drop(op, args):
- """
- Applies op to arguments elementwise, discarding entries that don't occur in
- every argument (i.e. behaves like a product).
- """
- # avoid querying lots of nonexistent keys
- smallest = min(args, key=len)
- sindex = args.index(smallest)
- ret = dict(smallest)
- for i in range(len(args)):
- if i == sindex:
- continue
- d = args[i]
- for key in ret.keys():
- if key in d:
- ret[key] = op([ret[key], d[key]])
- else:
- del ret[key]
- return ret
-
-def d_sum(args):
- """
- Computes a sum of vectors.
- """
- return d_elt_op_keep(sum, 0, args)
-
-def d_logspace_sum(args):
- """
- Computes a sum of vectors whose elements are represented in logspace.
- """
- return d_elt_op_keep(mu.logspace_sum, -float('inf'), args)
-
-def d_elt_prod(args):
- """
- Computes an elementwise product of vectors.
- """
- return d_elt_op_drop(lambda l: reduce(lambda a,b: a*b, l), args)
-
-def d_dot_prod(d1, d2):
- """
- Takes the dot product of the two arguments.
- """
- # avoid querying lots of nonexistent keys
- if len(d2) < len(d1):
- d1, d2 = d2, d1
- dot_prod = 0
- for key in d1:
- if key in d2:
- dot_prod += d1[key] * d2[key]
- return dot_prod
-
-def d_logspace_scalar_prod(c, d):
- """
- Multiplies every element of d by c, where c and d are both represented in
- logspace.
- """
- ret = {}
- for key in d:
- ret[key] = c + d[key]
- return ret
-
-def d_op(op, d):
- """
- Applies op to every element of the dictionary.
- """
- ret = {}
- for key in d:
- ret[key] = op(d[key])
- return ret
-
-# convenience methods
-def d_log(d):
- return d_op(math.log, d)
-
-def d_exp(d):
- return d_op(math.exp, d)