summaryrefslogtreecommitdiff
path: root/resources/literature
diff options
context:
space:
mode:
authorPatrick Simianer <p@simianer.de>2010-06-10 02:05:49 +0200
committerPatrick Simianer <p@simianer.de>2010-06-10 02:05:49 +0200
commitcde3febf76396e200e1cf8d922329af5cb5f0b32 (patch)
tree228afbdfa5cdac6241aad36368d728ca5e105546 /resources/literature
parent8b670cd2255040ba3f92a45a2f5abb200771079d (diff)
presentation
Diffstat (limited to 'resources/literature')
-rw-r--r--resources/literature/04-regulaere-ausdruecke.pdfbin0 -> 150900 bytes
-rw-r--r--resources/literature/GNfaToDfa.cs629
-rw-r--r--resources/literature/J00-1005.pdfbin0 -> 925842 bytes
3 files changed, 629 insertions, 0 deletions
diff --git a/resources/literature/04-regulaere-ausdruecke.pdf b/resources/literature/04-regulaere-ausdruecke.pdf
new file mode 100644
index 0000000..fe4e985
--- /dev/null
+++ b/resources/literature/04-regulaere-ausdruecke.pdf
Binary files differ
diff --git a/resources/literature/GNfaToDfa.cs b/resources/literature/GNfaToDfa.cs
new file mode 100644
index 0000000..df88b1d
--- /dev/null
+++ b/resources/literature/GNfaToDfa.cs
@@ -0,0 +1,629 @@
+// RegExp -> NFA -> DFA -> Graph in Generic C#
+// This program requires .Net version 2.0.
+// Peter Sestoft (sestoft@dina.kvl.dk)
+// Java 2000-10-07, GC# 2001-10-23, 2003-09-03, 2004-07-26, 2006-03-05
+
+// This file contains, in order:
+// * A class Nfa for representing an NFA (a nondeterministic finite
+// automaton), and for converting it to a DFA (a deterministic
+// finite automaton). Most complexity is in this class.
+// * A class Dfa for representing a DFA, a deterministic finite
+// automaton, and for writing a dot input file representing the DFA.
+// * Classes for representing regular expressions, and for building an
+// NFA from a regular expression
+// * A test class that creates an NFA, a DFA, and a dot input file
+// for a number of small regular expressions. The DFAs are
+// not minimized.
+
+using System;
+using System.Text;
+using System.Collections;
+using System.Collections.Generic;
+using System.IO;
+
+// A set represented as the collection of keys of a Dictionary
+
+class Set<T> : ICollection<T> {
+ // Only the keys matter; the type bool used for the value is arbitrary
+ private Dictionary<T,bool> dict;
+ public Set() {
+ dict = new Dictionary<T,bool>();
+ }
+
+ public Set(T x) : this() {
+ Add(x);
+ }
+
+ public Set(IEnumerable<T> coll) : this() {
+ foreach (T x in coll)
+ Add(x);
+ }
+
+ public Set(T[] arr) : this() {
+ foreach (T x in arr)
+ Add(x);
+ }
+
+ public bool Contains(T x) {
+ return dict.ContainsKey(x);
+ }
+
+ public void Add(T x) {
+ if (!Contains(x))
+ dict.Add(x, false);
+ }
+
+ public bool Remove(T x) {
+ return dict.Remove(x);
+ }
+
+ public void Clear() {
+ dict.Clear();
+ }
+
+ public bool IsReadOnly {
+ get { return false; }
+ }
+
+ public IEnumerator<T> GetEnumerator() {
+ return dict.Keys.GetEnumerator();
+ }
+
+ IEnumerator IEnumerable.GetEnumerator() {
+ return GetEnumerator();
+ }
+
+ public int Count {
+ get { return dict.Count; }
+ }
+
+ public void CopyTo(T[] arr, int i) {
+ dict.Keys.CopyTo(arr, i);
+ }
+
+ // Is this set a subset of that?
+ public bool Subset(Set<T> that) {
+ foreach (T x in this)
+ if (!that.Contains(x))
+ return false;
+ return true;
+ }
+
+ // Create new set as intersection of this and that
+ public Set<T> Intersection(Set<T> that) {
+ Set<T> res = new Set<T>();
+ foreach (T x in this)
+ if (that.Contains(x))
+ res.Add(x);
+ return res;
+ }
+
+ // Create new set as union of this and that
+ public Set<T> Union(Set<T> that) {
+ Set<T> res = new Set<T>(this);
+ foreach (T x in that)
+ res.Add(x);
+ return res;
+ }
+
+ // Compute hash code -- should be cached for efficiency
+ public override int GetHashCode() {
+ int res = 0;
+ foreach (T x in this)
+ res ^= x.GetHashCode();
+ return res;
+ }
+
+ public override bool Equals(Object that) {
+ if (that is Set<T>) {
+ Set<T> thatSet = (Set<T>)that;
+ return thatSet.Count == this.Count
+ && thatSet.Subset(this) && this.Subset(thatSet);
+ } else
+ return false;
+ }
+
+ public override String ToString() {
+ StringBuilder res = new StringBuilder();
+ res.Append("{ ");
+ bool first = true;
+ foreach (T x in this) {
+ if (!first)
+ res.Append(", ");
+ res.Append(x);
+ first = false;
+ }
+ res.Append(" }");
+ return res.ToString();
+ }
+}
+
+// ----------------------------------------------------------------------
+
+// Regular expressions, NFAs, DFAs, and dot graphs
+// sestoft@dina.kvl.dk *
+// Java 2001-07-10 * C# 2001-10-22 * Gen C# 2001-10-23, 2003-09-03
+
+// In the Generic C# 2.0 version we
+// use Queue<int> and Queue<Set<int>> for worklists
+// use Set<int> for pre-DFA states
+// use List<Transition> for NFA transition relations
+// use Dictionary<Set<int>, Dictionary<String, Set<int>>>
+// and Dictionary<int, Dictionary<String, int>> for DFA transition relations
+
+/* Class Nfa and conversion from NFA to DFA ---------------------------
+
+ A nondeterministic finite automaton (NFA) is represented as a
+ Map from state number (int) to a List of Transitions, a
+ Transition being a pair of a label lab (a String, null meaning
+ epsilon) and a target state (an int).
+
+ A DFA is created from an NFA in two steps:
+
+ (1) Construct a DFA whose each of whose states is composite,
+ namely a set of NFA states (Set of int). This is done by
+ methods CompositeDfaTrans and EpsilonClose.
+
+ (2) Replace composite states (Set of int) by simple states
+ (int). This is done by methods Rename and MkRenamer.
+
+ Method CompositeDfaTrans works as follows:
+
+ Create the epsilon-closure S0 (a Set of ints) of the start
+ state s0, and put it in a worklist (a Queue). Create an
+ empty DFA transition relation, which is a Map from a
+ composite state (an epsilon-closed Set of ints) to a Map
+ from a label (a non-null String) to a composite state.
+
+ Repeatedly choose a composite state S from the worklist. If it is
+ not already in the keyset of the DFA transition relation, compute
+ for every non-epsilon label lab the set T of states reachable by
+ that label from some state s in S. Compute the epsilon-closure
+ Tclose of every such state T and put it on the worklist. Then add
+ the transition S -lab-> Tclose to the DFA transition relation, for
+ every lab.
+
+ Method EpsilonClose works as follows:
+
+ Given a set S of states. Put the states of S in a worklist.
+ Repeatedly choose a state s from the worklist, and consider all
+ epsilon-transitions s -eps-> s' from s. If s' is in S already,
+ then do nothing; otherwise add s' to S and the worklist. When the
+ worklist is empty, S is epsilon-closed; return S.
+
+ Method MkRenamer works as follows:
+
+ Given a Map from Set of int to something, create an
+ injective Map from Set of int to int, by choosing a fresh
+ int for every value of the map.
+
+ Method Rename works as follows:
+
+ Given a Map from Set of int to Map from String to Set of
+ int, use the result of MkRenamer to replace all Sets of ints
+ by ints.
+
+*/
+
+
+class Nfa {
+ private readonly int startState;
+ private readonly int exitState; // This is the unique accept state
+ private readonly IDictionary<int,List<Transition>> trans;
+
+ public Nfa(int startState, int exitState) {
+ this.startState = startState; this.exitState = exitState;
+ trans = new Dictionary<int,List<Transition>>();
+ if (!startState.Equals(exitState))
+ trans.Add(exitState, new List<Transition>());
+ }
+
+ public int Start { get { return startState; } }
+
+ public int Exit { get { return exitState; } }
+
+ public IDictionary<int, List<Transition>> Trans {
+ get { return trans; }
+ }
+
+ public void AddTrans(int s1, String lab, int s2) {
+ List<Transition> s1Trans;
+ if (trans.ContainsKey(s1))
+ s1Trans = trans[s1];
+ else {
+ s1Trans = new List<Transition>();
+ trans.Add(s1, s1Trans);
+ }
+ s1Trans.Add(new Transition(lab, s2));
+ }
+
+ public void AddTrans(KeyValuePair<int, List<Transition>> tr) {
+ // Assumption: if tr is in trans, it maps to an empty list (end state)
+ trans.Remove(tr.Key);
+ trans.Add(tr.Key, tr.Value);
+ }
+
+ public override String ToString() {
+ return "NFA start=" + startState + " exit=" + exitState;
+ }
+
+ // Construct the transition relation of a composite-state DFA
+ // from an NFA with start state s0 and transition relation
+ // trans (a Map from int to List of Transition). The start
+ // state of the constructed DFA is the epsilon closure of s0,
+ // and its transition relation is a Map from a composite state
+ // (a Set of ints) to a Map from label (a String) to a
+ // composite state (a Set of ints).
+
+ static IDictionary<Set<int>, IDictionary<String, Set<int>>>
+ CompositeDfaTrans(int s0, IDictionary<int, List<Transition>> trans) {
+ Set<int> S0 = EpsilonClose(new Set<int>(s0), trans);
+ Queue<Set<int>> worklist = new Queue<Set<int>>();
+ worklist.Enqueue(S0);
+ // The transition relation of the DFA
+ IDictionary<Set<int>, IDictionary<String, Set<int>>> res =
+ new Dictionary<Set<int>, IDictionary<String, Set<int>>>();
+ while (worklist.Count != 0) {
+ Set<int> S = worklist.Dequeue();
+ if (!res.ContainsKey(S)) {
+ // The S -lab-> T transition relation being constructed for a given S
+ IDictionary<String, Set<int>> STrans =
+ new Dictionary<String, Set<int>>();
+ // For all s in S, consider all transitions s -lab-> t
+ foreach (int s in S) {
+ // For all non-epsilon transitions s -lab-> t, add t to T
+ foreach (Transition tr in trans[s]) {
+ if (tr.lab != null) { // Already a transition on lab
+ Set<int> toState;
+ if (STrans.ContainsKey(tr.lab))
+ toState = STrans[tr.lab];
+ else { // No transitions on lab yet
+ toState = new Set<int>();
+ STrans.Add(tr.lab, toState);
+ }
+ toState.Add(tr.target);
+ }
+ }
+ }
+ // Epsilon-close all T such that S -lab-> T, and put on worklist
+ Dictionary<String, Set<int>> STransClosed =
+ new Dictionary<String, Set<int> >();
+ foreach (KeyValuePair<String, Set<int>> entry in STrans) {
+ Set<int> Tclose = EpsilonClose(entry.Value, trans);
+ STransClosed.Add(entry.Key, Tclose);
+ worklist.Enqueue(Tclose);
+ }
+ res.Add(S, STransClosed);
+ }
+ }
+ return res;
+ }
+
+ // Compute epsilon-closure of state set S in transition relation trans.
+
+ static Set<int>
+ EpsilonClose(Set<int> S, IDictionary<int, List<Transition>> trans) {
+ // The worklist initially contains all S members
+ Queue<int> worklist = new Queue<int>(S);
+ Set<int> res = new Set<int>(S);
+ while (worklist.Count != 0) {
+ int s = worklist.Dequeue();
+ foreach (Transition tr in trans[s]) {
+ if (tr.lab == null && !res.Contains(tr.target)) {
+ res.Add(tr.target);
+ worklist.Enqueue(tr.target);
+ }
+ }
+ }
+ return res;
+ }
+
+ // Compute a renamer, which is a Map from Set of int to int
+
+ static IDictionary<Set<int>, int> MkRenamer(ICollection<Set<int>> states) {
+ IDictionary<Set<int>, int> renamer = new Dictionary<Set<int>, int>();
+ int count = 0;
+ foreach (Set<int> k in states)
+ renamer.Add(k, count++);
+ return renamer;
+ }
+
+ // Using a renamer (a Map from Set of int to int), replace
+ // composite (Set of int) states with simple (int) states in
+ // the transition relation trans, which is assumed to be a Map
+ // from Set of int to Map from String to Set of int. The
+ // result is a Map from int to Map from String to int.
+
+ static IDictionary<int, IDictionary<String, int>>
+ Rename(IDictionary<Set<int>, int> renamer,
+ IDictionary<Set<int>, IDictionary<String, Set<int>>> trans) {
+ IDictionary<int, IDictionary<String, int>> newtrans =
+ new Dictionary<int, IDictionary<String, int>>();
+ foreach (KeyValuePair<Set<int>, IDictionary<String, Set<int>>> entry
+ in trans) {
+ Set<int> k = entry.Key;
+ IDictionary<String, int> newktrans = new Dictionary<String, int>();
+ foreach (KeyValuePair<String, Set<int>> tr in entry.Value)
+ newktrans.Add(tr.Key, renamer[tr.Value]);
+ newtrans.Add(renamer[k], newktrans);
+ }
+ return newtrans;
+ }
+
+ static Set<int> AcceptStates(ICollection<Set<int>> states,
+ IDictionary<Set<int>, int> renamer,
+ int exit) {
+ Set<int> acceptStates = new Set<int>();
+ foreach (Set<int> state in states)
+ if (state.Contains(exit))
+ acceptStates.Add(renamer[state]);
+ return acceptStates;
+ }
+
+ public Dfa ToDfa() {
+ IDictionary<Set<int>, IDictionary<String, Set<int>>>
+ cDfaTrans = CompositeDfaTrans(startState, trans);
+ Set<int> cDfaStart = EpsilonClose(new Set<int>(startState), trans);
+ ICollection<Set<int>> cDfaStates = cDfaTrans.Keys;
+ IDictionary<Set<int>, int> renamer = MkRenamer(cDfaStates);
+ IDictionary<int, IDictionary<String, int>> simpleDfaTrans =
+ Rename(renamer, cDfaTrans);
+ int simpleDfaStart = renamer[cDfaStart];
+ Set<int> simpleDfaAccept = AcceptStates(cDfaStates, renamer, exitState);
+ return new Dfa(simpleDfaStart, simpleDfaAccept, simpleDfaTrans);
+ }
+
+ // Nested class for creating distinctly named states when constructing NFAs
+
+ public class NameSource {
+ private static int nextName = 0;
+
+ public int next() {
+ return nextName++;
+ }
+ }
+}
+
+// Class Transition, a transition from one state to another ----------
+
+ public class Transition {
+ public String lab;
+ public int target;
+
+ public Transition(String lab, int target) {
+ this.lab = lab; this.target = target;
+ }
+
+ public override String ToString() {
+ return "-" + lab + "-> " + target;
+ }
+ }
+
+// Class Dfa, deterministic finite automata --------------------------
+
+/*
+ A deterministic finite automaton (DFA) is represented as a Map
+ from state number (int) to a Map from label (a String,
+ non-null) to a target state (an int).
+*/
+
+class Dfa {
+ private readonly int startState;
+ private readonly Set<int> acceptStates;
+ private readonly IDictionary<int, IDictionary<String,int>> trans;
+
+ public Dfa(int startState, Set<int> acceptStates,
+ IDictionary<int, IDictionary<String,int>> trans) {
+ this.startState = startState;
+ this.acceptStates = acceptStates;
+ this.trans = trans;
+ }
+
+ public int Start { get { return startState; } }
+
+ public Set<int> Accept { get { return acceptStates; } }
+
+ public IDictionary<int, IDictionary<String,int>> Trans {
+ get { return trans; }
+ }
+
+ public override String ToString() {
+ return "DFA start=" + startState + "\naccept=" + acceptStates;
+ }
+
+ // Write an input file for the dot program. You can find dot at
+ // http://www.research.att.com/sw/tools/graphviz/
+
+ public void WriteDot(String filename) {
+ TextWriter wr =
+ new StreamWriter(new FileStream(filename, FileMode.Create,
+ FileAccess.Write));
+ wr.WriteLine("// Format this file as a Postscript file with ");
+ wr.WriteLine("// dot " + filename + " -Tps -o out.ps\n");
+ wr.WriteLine("digraph dfa {");
+ wr.WriteLine("size=\"11,8.25\";");
+ wr.WriteLine("rotate=90;");
+ wr.WriteLine("rankdir=LR;");
+ wr.WriteLine("n999999 [style=invis];"); // Invisible start node
+ wr.WriteLine("n999999 -> n" + startState); // Edge into start state
+
+ // Accept states are double circles
+ foreach (int state in trans.Keys)
+ if (acceptStates.Contains(state))
+ wr.WriteLine("n" + state + " [peripheries=2];");
+
+ // The transitions
+ foreach (KeyValuePair<int, IDictionary<String, int>> entry in trans) {
+ int s1 = entry.Key;
+ foreach (KeyValuePair<String, int> s1Trans in entry.Value) {
+ String lab = s1Trans.Key;
+ int s2 = s1Trans.Value;
+ wr.WriteLine("n" + s1 + " -> n" + s2 + " [label=\"" + lab + "\"];");
+ }
+ }
+ wr.WriteLine("}");
+ wr.Close();
+ }
+}
+
+// Regular expressions ----------------------------------------------
+//
+// Abstract syntax of regular expressions
+// r ::= A | r1 r2 | (r1|r2) | r*
+//
+
+abstract class Regex {
+ abstract public Nfa MkNfa(Nfa.NameSource names);
+}
+
+class Eps : Regex {
+ // The resulting nfa0 has form s0s -eps-> s0e
+
+ public override Nfa MkNfa(Nfa.NameSource names) {
+ int s0s = names.next();
+ int s0e = names.next();
+ Nfa nfa0 = new Nfa(s0s, s0e);
+ nfa0.AddTrans(s0s, null, s0e);
+ return nfa0;
+ }
+}
+
+class Sym : Regex {
+ String sym;
+
+ public Sym(String sym) {
+ this.sym = sym;
+ }
+
+ // The resulting nfa0 has form s0s -sym-> s0e
+
+ public override Nfa MkNfa(Nfa.NameSource names) {
+ int s0s = names.next();
+ int s0e = names.next();
+ Nfa nfa0 = new Nfa(s0s, s0e);
+ nfa0.AddTrans(s0s, sym, s0e);
+ return nfa0;
+ }
+}
+
+class Seq : Regex {
+ Regex r1, r2;
+
+ public Seq(Regex r1, Regex r2) {
+ this.r1 = r1; this.r2 = r2;
+ }
+
+ // If nfa1 has form s1s ----> s1e
+ // and nfa2 has form s2s ----> s2e
+ // then nfa0 has form s1s ----> s1e -eps-> s2s ----> s2e
+
+ public override Nfa MkNfa(Nfa.NameSource names) {
+ Nfa nfa1 = r1.MkNfa(names);
+ Nfa nfa2 = r2.MkNfa(names);
+ Nfa nfa0 = new Nfa(nfa1.Start, nfa2.Exit);
+ foreach (KeyValuePair<int, List<Transition>> entry in nfa1.Trans)
+ nfa0.AddTrans(entry);
+ foreach (KeyValuePair<int, List<Transition>> entry in nfa2.Trans)
+ nfa0.AddTrans(entry);
+ nfa0.AddTrans(nfa1.Exit, null, nfa2.Start);
+ return nfa0;
+ }
+}
+
+class Alt : Regex {
+ Regex r1, r2;
+
+ public Alt(Regex r1, Regex r2) {
+ this.r1 = r1; this.r2 = r2;
+ }
+
+ // If nfa1 has form s1s ----> s1e
+ // and nfa2 has form s2s ----> s2e
+ // then nfa0 has form s0s -eps-> s1s ----> s1e -eps-> s0e
+ // s0s -eps-> s2s ----> s2e -eps-> s0e
+
+ public override Nfa MkNfa(Nfa.NameSource names) {
+ Nfa nfa1 = r1.MkNfa(names);
+ Nfa nfa2 = r2.MkNfa(names);
+ int s0s = names.next();
+ int s0e = names.next();
+ Nfa nfa0 = new Nfa(s0s, s0e);
+ foreach (KeyValuePair<int, List<Transition>> entry in nfa1.Trans)
+ nfa0.AddTrans(entry);
+ foreach (KeyValuePair<int, List<Transition>> entry in nfa2.Trans)
+ nfa0.AddTrans(entry);
+ nfa0.AddTrans(s0s, null, nfa1.Start);
+ nfa0.AddTrans(s0s, null, nfa2.Start);
+ nfa0.AddTrans(nfa1.Exit, null, s0e);
+ nfa0.AddTrans(nfa2.Exit, null, s0e);
+ return nfa0;
+ }
+}
+
+class Star : Regex {
+ Regex r;
+
+ public Star(Regex r) {
+ this.r = r;
+ }
+
+ // If nfa1 has form s1s ----> s1e
+ // then nfa0 has form s0s ----> s0s
+ // s0s -eps-> s1s
+ // s1e -eps-> s0s
+
+ public override Nfa MkNfa(Nfa.NameSource names) {
+ Nfa nfa1 = r.MkNfa(names);
+ int s0s = names.next();
+ Nfa nfa0 = new Nfa(s0s, s0s);
+ foreach (KeyValuePair<int, List<Transition>> entry in nfa1.Trans)
+ nfa0.AddTrans(entry);
+ nfa0.AddTrans(s0s, null, nfa1.Start);
+ nfa0.AddTrans(nfa1.Exit, null, s0s);
+ return nfa0;
+ }
+}
+
+// Trying the RE->NFA->DFA translation on three regular expressions
+
+class TestNFA {
+ public static void Main(String[] args) {
+ Regex a = new Sym("A");
+ Regex b = new Sym("B");
+ Regex c = new Sym("C");
+ Regex abStar = new Star(new Alt(a, b));
+ Regex bb = new Seq(b, b);
+ Regex r = new Seq(abStar, new Seq(a, b));
+ // The regular expression (a|b)*ab
+ BuildAndShow("dfa1.dot", r);
+ // The regular expression ((a|b)*ab)*
+ BuildAndShow("dfa2.dot", new Star(r));
+ // The regular expression ((a|b)*ab)((a|b)*ab)
+ BuildAndShow("dfa3.dot", new Seq(r, r));
+ // The regular expression (a|b)*abb, from ASU 1986 p 136
+ BuildAndShow("dfa4.dot", new Seq(abStar, new Seq(a, bb)));
+ // SML reals: sign?((digit+(\.digit+)?))([eE]sign?digit+)?
+ Regex d = new Sym("digit");
+ Regex dPlus = new Seq(d, new Star(d));
+ Regex s = new Sym("sign");
+ Regex sOpt = new Alt(s, new Eps());
+ Regex dot = new Sym(".");
+ Regex dotDigOpt = new Alt(new Eps(), new Seq(dot, dPlus));
+ Regex mant = new Seq(sOpt, new Seq(dPlus, dotDigOpt));
+ Regex e = new Sym("e");
+ Regex exp = new Alt(new Eps(), new Seq(e, new Seq(sOpt, dPlus)));
+ Regex smlReal = new Seq(mant, exp);
+ BuildAndShow("dfa5.dot", smlReal);
+ }
+
+ public static void BuildAndShow(String filename, Regex r) {
+ Nfa nfa = r.MkNfa(new Nfa.NameSource());
+ Console.WriteLine(nfa);
+ Console.WriteLine("---");
+ Dfa dfa = nfa.ToDfa();
+ Console.WriteLine(dfa);
+ Console.WriteLine("Writing DFA graph to file " + filename);
+ dfa.WriteDot(filename);
+ Console.WriteLine();
+ }
+}
diff --git a/resources/literature/J00-1005.pdf b/resources/literature/J00-1005.pdf
new file mode 100644
index 0000000..90f4704
--- /dev/null
+++ b/resources/literature/J00-1005.pdf
Binary files differ