blob: f5ff4b35e2634373523f22fbfe0877ae2f8a8536 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
|
- require 'zipf'
!!!
%html
%head
%title Summary (Session #{session_key})
%link(rel="stylesheet" type="text/css" href="debug.css")
%script{:src => "http://postedit.cl.uni-heidelberg.de/js/jquery.min.js"}
%script{:src => "http://postedit.cl.uni-heidelberg.de/js/jquery.tablesorter.min.js"}
%script{:src => "http://postedit.cl.uni-heidelberg.de/js/debug.js"}
%body
%h1 Summary
%p.small (Session #{session_key})
%p Data is shown in the MT system's formatting. BLEU is calculated without smoothing. TER capped at 1.0.
%table
%tr
%td
#{"#"}
%td
%strong Source
%td
%strong
Post-Edit
%td
%strong
Reference
%td
%strong
BLEU
%td
%strong
TER
%td
%strong
Keystrokes
%td
%strong
Mouse actions
%td
%strong
Duration
- data["post_edits"].each_with_index do |pe,j|
%tr
%td.center #{j+1}.
%td #{data["source_segments"][j]}
%td #{pe}
%td #{data["references"][j]}
%td.center #{(BLEU::per_sentence_bleu(pe, [data["references"][j]], 4, 0)*100).round 2}%
%td.center #{ter_scores[j]}
%td.center #{data["count_kbd"][j]}
%td.center #{data["count_click"][j]}
%td.center #{(data["durations"][j]/1000).round 1}s
|