1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
|
/* Copyright (c) 2001 by David Chiang. All rights reserved.*/
#include <string.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <stdio.h>
#include <sys/socket.h>
#include <sys/types.h>
#include <sys/time.h>
#include <netinet/in.h>
#include <sched.h>
#include <pthread.h>
#include <errno.h>
#include "sentserver.h"
#define MAX_CLIENTS 32
struct clientinfo {
int s;
struct sockaddr_in sin;
};
struct line {
int id;
char *s;
int status;
struct line *next;
} *head, **ptail;
int n_sent = 0, n_received=0, n_flushed=0;
#define STATUS_RUNNING 0
#define STATUS_ABORTED 1
#define STATUS_FINISHED 2
pthread_mutex_t queue_mutex = PTHREAD_MUTEX_INITIALIZER;
pthread_mutex_t clients_mutex = PTHREAD_MUTEX_INITIALIZER;
pthread_mutex_t input_mutex = PTHREAD_MUTEX_INITIALIZER;
int n_clients = 0;
int s;
int expect_multiline_output = 0;
int log_mutex = 0;
int stay_alive = 0; /* dont panic and die with zero clients */
void queue_finish(struct line *node, char *s, int fid);
char * read_line(int fd, int multiline);
void done (int code);
struct line * queue_get(int fid) {
struct line *cur;
char *s, *synch;
if (log_mutex) fprintf(stderr, "Getting for data for fid %d\n", fid);
if (log_mutex) fprintf(stderr, "Locking queue mutex (%d)\n", fid);
pthread_mutex_lock(&queue_mutex);
/* First, check for aborted sentences. */
if (log_mutex) fprintf(stderr, " Checking queue for aborted jobs (fid %d)\n", fid);
for (cur = head; cur != NULL; cur = cur->next) {
if (cur->status == STATUS_ABORTED) {
cur->status = STATUS_RUNNING;
if (log_mutex) fprintf(stderr, "Unlocking queue mutex (%d)\n", fid);
pthread_mutex_unlock(&queue_mutex);
return cur;
}
}
if (log_mutex) fprintf(stderr, "Unlocking queue mutex (%d)\n", fid);
pthread_mutex_unlock(&queue_mutex);
/* Otherwise, read a new one. */
if (log_mutex) fprintf(stderr, "Locking input mutex (%d)\n", fid);
if (log_mutex) fprintf(stderr, " Reading input for new data (fid %d)\n", fid);
pthread_mutex_lock(&input_mutex);
s = read_line(0,0);
while (s) {
if (log_mutex) fprintf(stderr, "Locking queue mutex (%d)\n", fid);
pthread_mutex_lock(&queue_mutex);
if (log_mutex) fprintf(stderr, "Unlocking input mutex (%d)\n", fid);
pthread_mutex_unlock(&input_mutex);
cur = malloc(sizeof (struct line));
cur->id = n_sent;
cur->s = s;
cur->next = NULL;
*ptail = cur;
ptail = &cur->next;
n_sent++;
if (strcmp(s,"===SYNCH===\n")==0){
fprintf(stderr, "Received ===SYNCH=== signal (fid %d)\n", fid);
// Note: queue_finish calls free(cur->s).
// Therefore we need to create a new string here.
synch = malloc((strlen("===SYNCH===\n")+2) * sizeof (char));
synch = strcpy(synch, s);
if (log_mutex) fprintf(stderr, "Unlocking queue mutex (%d)\n", fid);
pthread_mutex_unlock(&queue_mutex);
queue_finish(cur, synch, fid); /* handles its own lock */
if (log_mutex) fprintf(stderr, "Locking input mutex (%d)\n", fid);
if (log_mutex) fprintf(stderr, " Reading input for new data (fid %d)\n", fid);
pthread_mutex_lock(&input_mutex);
s = read_line(0,0);
} else {
if (log_mutex) fprintf(stderr, " Received new data %d (fid %d)\n", cur->id, fid);
cur->status = STATUS_RUNNING;
if (log_mutex) fprintf(stderr, "Unlocking queue mutex (%d)\n", fid);
pthread_mutex_unlock(&queue_mutex);
return cur;
}
}
if (log_mutex) fprintf(stderr, "Unlocking input mutex (%d)\n", fid);
pthread_mutex_unlock(&input_mutex);
/* Only way to reach this point: no more output */
if (log_mutex) fprintf(stderr, "Locking queue mutex (%d)\n", fid);
pthread_mutex_lock(&queue_mutex);
if (head == NULL) {
fprintf(stderr, "Reached end of file. Exiting.\n");
done(0);
} else
ptail = NULL; /* This serves as a signal that there is no more input */
if (log_mutex) fprintf(stderr, "Unlocking queue mutex (%d)\n", fid);
pthread_mutex_unlock(&queue_mutex);
return NULL;
}
void queue_panic() {
struct line *next;
while (head && head->status == STATUS_FINISHED) {
/* Write out finished sentences */
if (head->status == STATUS_FINISHED) {
fputs(head->s, stdout);
fflush(stdout);
}
/* Write out blank line for unfinished sentences */
if (head->status == STATUS_ABORTED) {
fputs("\n", stdout);
fflush(stdout);
}
/* By defition, there cannot be any RUNNING sentences, since
function is only called when n_clients == 0 */
free(head->s);
next = head->next;
free(head);
head = next;
n_flushed++;
}
fclose(stdout);
fprintf(stderr, "All clients died. Panicking, flushing completed sentences and exiting.\n");
done(1);
}
void queue_abort(struct line *node, int fid) {
if (log_mutex) fprintf(stderr, "Locking queue mutex (%d)\n", fid);
pthread_mutex_lock(&queue_mutex);
node->status = STATUS_ABORTED;
if (n_clients == 0) {
if (stay_alive) {
fprintf(stderr, "Warning! No live clients detected! Staying alive, will retry soon.\n");
} else {
queue_panic();
}
}
if (log_mutex) fprintf(stderr, "Unlocking queue mutex (%d)\n", fid);
pthread_mutex_unlock(&queue_mutex);
}
void queue_print() {
struct line *cur;
fprintf(stderr, " Queue\n");
for (cur = head; cur != NULL; cur = cur->next) {
switch(cur->status) {
case STATUS_RUNNING:
fprintf(stderr, " %d running ", cur->id); break;
case STATUS_ABORTED:
fprintf(stderr, " %d aborted ", cur->id); break;
case STATUS_FINISHED:
fprintf(stderr, " %d finished ", cur->id); break;
}
fprintf(stderr, "\n");
//fprintf(stderr, cur->s);
}
}
void queue_finish(struct line *node, char *s, int fid) {
struct line *next;
if (log_mutex) fprintf(stderr, "Locking queue mutex (%d)\n", fid);
pthread_mutex_lock(&queue_mutex);
free(node->s);
node->s = s;
node->status = STATUS_FINISHED;
n_received++;
/* Flush out finished nodes */
while (head && head->status == STATUS_FINISHED) {
if (log_mutex) fprintf(stderr, " Flushing finished node %d\n", head->id);
fputs(head->s, stdout);
fflush(stdout);
if (log_mutex) fprintf(stderr, " Flushed node %d\n", head->id);
free(head->s);
next = head->next;
free(head);
head = next;
n_flushed++;
if (head == NULL) { /* empty queue */
if (ptail == NULL) { /* This can only happen if set in queue_get as signal that there is no more input. */
fprintf(stderr, "All sentences finished. Exiting.\n");
done(0);
} else /* ptail pointed at something which was just popped off the stack -- reset to head*/
ptail = &head;
}
}
if (log_mutex) fprintf(stderr, " Flushing output %d\n", head->id);
fflush(stdout);
fprintf(stderr, "%d sentences sent, %d sentences finished, %d sentences flushed\n", n_sent, n_received, n_flushed);
if (log_mutex) fprintf(stderr, "Unlocking queue mutex (%d)\n", fid);
pthread_mutex_unlock(&queue_mutex);
}
char * read_line(int fd, int multiline) {
int size = 80;
char errorbuf[100];
char *s = malloc(size+2);
int result, errors=0;
int i = 0;
result = read(fd, s+i, 1);
while (1) {
if (result < 0) {
perror("read()");
sprintf(errorbuf, "Error code: %d\n", errno);
fprintf(stderr, errorbuf);
errors++;
if (errors > 5) {
free(s);
return NULL;
} else {
sleep(1); /* retry after delay */
}
} else if (result == 0) {
break;
} else if (multiline==0 && s[i] == '\n') {
break;
} else {
if (s[i] == '\n'){
/* if we've reached this point,
then multiline must be 1, and we're
going to poll the fd for an additional
line of data. The basic design is to
run a select on the filedescriptor fd.
Select will return under two conditions:
if there is data on the fd, or if a
timeout is reached. We'll select on this
fd. If select returns because there's data
ready, keep going; else assume there's no
more and return the data we already have.
*/
fd_set set;
FD_ZERO(&set);
FD_SET(fd, &set);
struct timeval timeout;
timeout.tv_sec = 3; // number of seconds for timeout
timeout.tv_usec = 0;
int ready = select(FD_SETSIZE, &set, NULL, NULL, &timeout);
if (ready<1){
break; // no more data, stop looping
}
}
i++;
if (i == size) {
size = size*2;
s = realloc(s, size+2);
}
}
result = read(fd, s+i, 1);
}
if (result == 0 && i == 0) { /* end of file */
free(s);
return NULL;
}
s[i] = '\n';
s[i+1] = '\0';
return s;
}
void * new_client(void *arg) {
struct clientinfo *client = (struct clientinfo *)arg;
struct line *cur;
int result;
char *s;
char errorbuf[100];
pthread_mutex_lock(&clients_mutex);
n_clients++;
pthread_mutex_unlock(&clients_mutex);
fprintf(stderr, "Client connected (%d connected)\n", n_clients);
for (;;) {
cur = queue_get(client->s);
if (cur) {
/* fprintf(stderr, "Sending to client: %s", cur->s); */
fprintf(stderr, "Sending data %d to client (fid %d)\n", cur->id, client->s);
result = write(client->s, cur->s, strlen(cur->s));
if (result < strlen(cur->s)){
perror("write()");
sprintf(errorbuf, "Error code: %d\n", errno);
fprintf(stderr, errorbuf);
pthread_mutex_lock(&clients_mutex);
n_clients--;
pthread_mutex_unlock(&clients_mutex);
fprintf(stderr, "Client died (%d connected)\n", n_clients);
queue_abort(cur, client->s);
close(client->s);
free(client);
pthread_exit(NULL);
}
} else {
close(client->s);
pthread_mutex_lock(&clients_mutex);
n_clients--;
pthread_mutex_unlock(&clients_mutex);
fprintf(stderr, "Client dismissed (%d connected)\n", n_clients);
pthread_exit(NULL);
}
s = read_line(client->s,expect_multiline_output);
if (s) {
/* fprintf(stderr, "Client (fid %d) returned: %s", client->s, s); */
fprintf(stderr, "Client (fid %d) returned data %d\n", client->s, cur->id);
// queue_print();
queue_finish(cur, s, client->s);
} else {
pthread_mutex_lock(&clients_mutex);
n_clients--;
pthread_mutex_unlock(&clients_mutex);
fprintf(stderr, "Client died (%d connected)\n", n_clients);
queue_abort(cur, client->s);
close(client->s);
free(client);
pthread_exit(NULL);
}
}
return 0;
}
void done (int code) {
close(s);
exit(code);
}
int main (int argc, char *argv[]) {
struct sockaddr_in sin, from;
int g;
socklen_t len;
struct clientinfo *client;
int port;
int opt;
int errors = 0;
int argi;
char *key = NULL, *client_key;
int use_key = 0;
/* the key stuff here doesn't provide any
real measure of security, it's mainly to keep
jobs from bumping into each other. */
pthread_t tid;
port = DEFAULT_PORT;
for (argi=1; argi < argc; argi++){
if (strcmp(argv[argi], "-m")==0){
expect_multiline_output = 1;
} else if (strcmp(argv[argi], "-k")==0){
argi++;
if (argi == argc){
fprintf(stderr, "Key must be specified after -k\n");
exit(1);
}
key = argv[argi];
use_key = 1;
} else if (strcmp(argv[argi], "--stay-alive")==0){
stay_alive = 1; /* dont panic and die with zero clients */
} else {
port = atoi(argv[argi]);
}
}
/* Initialize data structures */
head = NULL;
ptail = &head;
/* Set up listener */
s = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
opt = 1;
setsockopt(s, SOL_SOCKET, SO_REUSEADDR, &opt, sizeof(opt));
sin.sin_family = AF_INET;
sin.sin_addr.s_addr = htonl(INADDR_ANY);
sin.sin_port = htons(port);
while (bind(s, (struct sockaddr *) &sin, sizeof(sin)) < 0) {
perror("bind()");
sleep(1);
errors++;
if (errors > 100)
exit(1);
}
len = sizeof(sin);
getsockname(s, (struct sockaddr *) &sin, &len);
fprintf(stderr, "Listening on port %hu\n", ntohs(sin.sin_port));
while (listen(s, MAX_CLIENTS) < 0) {
perror("listen()");
sleep(1);
errors++;
if (errors > 100)
exit(1);
}
for (;;) {
len = sizeof(from);
g = accept(s, (struct sockaddr *)&from, &len);
if (g < 0) {
perror("accept()");
sleep(1);
continue;
}
client = malloc(sizeof(struct clientinfo));
client->s = g;
bcopy(&from, &client->sin, len);
if (use_key){
fd_set set;
FD_ZERO(&set);
FD_SET(client->s, &set);
struct timeval timeout;
timeout.tv_sec = 3; // number of seconds for timeout
timeout.tv_usec = 0;
int ready = select(FD_SETSIZE, &set, NULL, NULL, &timeout);
if (ready<1){
fprintf(stderr, "Prospective client failed to respond with correct key.\n");
close(client->s);
free(client);
} else {
client_key = read_line(client->s,0);
client_key[strlen(client_key)-1]='\0'; /* chop trailing newline */
if (strcmp(key, client_key)==0){
pthread_create(&tid, NULL, new_client, client);
} else {
fprintf(stderr, "Prospective client failed to respond with correct key.\n");
close(client->s);
free(client);
}
free(client_key);
}
} else {
pthread_create(&tid, NULL, new_client, client);
}
}
}
|