1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
|
#include "maxent.h"
#include <cmath>
#include <stdio.h>
using namespace std;
// const double SGD_ETA0 = 1;
// const double SGD_ITER = 30;
// const double SGD_ALPHA = 0.85;
//#define FOLOS_NAIVE
//#define FOLOS_LAZY
#define SGD_CP
inline void apply_l1_penalty(const int i, const double u, vector<double>& _vl,
vector<double>& q) {
double& w = _vl[i];
const double z = w;
double& qi = q[i];
if (w > 0) {
w = max(0.0, w - (u + qi));
} else if (w < 0) {
w = min(0.0, w + (u - qi));
}
qi += w - z;
}
static double l1norm(const vector<double>& v) {
double sum = 0;
for (size_t i = 0; i < v.size(); i++) sum += abs(v[i]);
return sum;
}
inline void update_folos_lazy(const int iter_sample, const int k,
vector<double>& _vl,
const vector<double>& sum_eta,
vector<int>& last_updated) {
const double penalty = sum_eta[iter_sample] - sum_eta[last_updated[k]];
double& x = _vl[k];
if (x > 0)
x = max(0.0, x - penalty);
else
x = min(0.0, x + penalty);
last_updated[k] = iter_sample;
}
int ME_Model::perform_SGD() {
if (_l2reg > 0) {
cerr << "error: L2 regularization is currently not supported in SGD mode."
<< endl;
exit(1);
}
cerr << "performing SGD" << endl;
const double l1param = _l1reg;
const int d = _fb.Size();
vector<int> ri(_vs.size());
for (size_t i = 0; i < ri.size(); i++) ri[i] = i;
vector<double> grad(d);
int iter_sample = 0;
const double eta0 = SGD_ETA0;
// cerr << "l1param = " << l1param << endl;
cerr << "eta0 = " << eta0 << " alpha = " << SGD_ALPHA << endl;
double u = 0;
vector<double> q(d, 0);
vector<int> last_updated(d, 0);
vector<double> sum_eta;
sum_eta.push_back(0);
for (int iter = 0; iter < SGD_ITER; iter++) {
random_shuffle(ri.begin(), ri.end());
double logl = 0;
int ncorrect = 0, ntotal = 0;
for (size_t i = 0; i < _vs.size(); i++, ntotal++, iter_sample++) {
const Sample& s = _vs[ri[i]];
#ifdef FOLOS_LAZY
for (vector<int>::const_iterator j = s.positive_features.begin();
j != s.positive_features.end(); j++) {
for (vector<int>::const_iterator k = _feature2mef[*j].begin();
k != _feature2mef[*j].end(); k++) {
update_folos_lazy(iter_sample, *k, _vl, sum_eta, last_updated);
}
}
#endif
vector<double> membp(_num_classes);
const int max_label = conditional_probability(s, membp);
const double eta =
eta0 * pow(SGD_ALPHA,
(double)iter_sample / _vs.size()); // exponential decay
// const double eta = eta0 / (1.0 + (double)iter_sample /
// _vs.size());
// if (iter_sample % _vs.size() == 0) cerr << "eta = " << eta <<
// endl;
u += eta * l1param;
sum_eta.push_back(sum_eta.back() + eta * l1param);
logl += log(membp[s.label]);
if (max_label == s.label) ncorrect++;
// binary features
for (vector<int>::const_iterator j = s.positive_features.begin();
j != s.positive_features.end(); j++) {
for (vector<int>::const_iterator k = _feature2mef[*j].begin();
k != _feature2mef[*j].end(); k++) {
const double me = membp[_fb.Feature(*k).label()];
const double ee = (_fb.Feature(*k).label() == s.label ? 1.0 : 0);
const double grad = (me - ee);
_vl[*k] -= eta * grad;
#ifdef SGD_CP
apply_l1_penalty(*k, u, _vl, q);
#endif
}
}
// real-valued features
for (vector<pair<int, double> >::const_iterator j = s.rvfeatures.begin();
j != s.rvfeatures.end(); j++) {
for (vector<int>::const_iterator k = _feature2mef[j->first].begin();
k != _feature2mef[j->first].end(); k++) {
const double me = membp[_fb.Feature(*k).label()];
const double ee = (_fb.Feature(*k).label() == s.label ? 1.0 : 0);
const double grad = (me - ee) * j->second;
_vl[*k] -= eta * grad;
#ifdef SGD_CP
apply_l1_penalty(*k, u, _vl, q);
#endif
}
}
#ifdef FOLOS_NAIVE
for (size_t j = 0; j < d; j++) {
double& x = _vl[j];
if (x > 0)
x = max(0.0, x - eta * l1param);
else
x = min(0.0, x + eta * l1param);
}
#endif
}
logl /= _vs.size();
// fprintf(stderr, "%4d logl = %8.3f acc = %6.4f ", iter, logl,
// (double)ncorrect / ntotal);
#ifdef FOLOS_LAZY
if (l1param > 0) {
for (size_t j = 0; j < d; j++)
update_folos_lazy(iter_sample, j, _vl, sum_eta, last_updated);
}
#endif
double f = logl;
if (l1param > 0) {
const double l1 =
l1norm(_vl); // this is not accurate when lazy update is used
// cerr << "f0 = " << update_model_expectation() - l1param * l1 << "
// ";
f -= l1param * l1;
int nonzero = 0;
for (int j = 0; j < d; j++)
if (_vl[j] != 0) nonzero++;
// cerr << " f = " << f << " l1 = " << l1 << " nonzero_features = "
// << nonzero << endl;
}
// fprintf(stderr, "%4d obj = %7.3f acc = %6.4f", iter+1, f,
// (double)ncorrect/ntotal);
// fprintf(stderr, "%4d obj = %f", iter+1, f);
fprintf(stderr, "%3d obj(err) = %f (%6.4f)", iter + 1, f,
1 - (double)ncorrect / ntotal);
if (_nheldout > 0) {
double heldout_logl = heldout_likelihood();
// fprintf(stderr, " heldout_logl = %f acc = %6.4f\n",
// heldout_logl, 1 - _heldout_error);
fprintf(stderr, " heldout_logl(err) = %f (%6.4f)", heldout_logl,
_heldout_error);
}
fprintf(stderr, "\n");
}
return 0;
}
|