summaryrefslogtreecommitdiff
path: root/utils/synutils/maxent-3.0/maxent.h
blob: 88a04e25430351187deee9f9f3045d6073124152 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
/*
 * $Id: maxent.h,v 1.1.1.1 2007/05/15 08:30:35 kyoshida Exp $
 */

#ifndef __MAXENT_H_
#define __MAXENT_H_

#include <string>
#include <vector>
#include <list>
#include <map>
#include <algorithm>
#include <iostream>
#include <string>
#include <cassert>
#include "mathvec.h"

#define USE_HASH_MAP  // if you encounter errors with hash, try commenting out
                      // this line. (the program will be a bit slower, though)
#ifdef USE_HASH_MAP
#include <ext/hash_map>
#endif

//
// data format for each sample for training/testing
//
struct ME_Sample {
 public:
  ME_Sample() : label("") {};
  ME_Sample(const std::string& l) : label(l) {};
  void set_label(const std::string& l) { label = l; }

  // to add a binary feature
  void add_feature(const std::string& f) { features.push_back(f); }

  // to add a real-valued feature
  void add_feature(const std::string& s, const double d) {
    rvfeatures.push_back(std::pair<std::string, double>(s, d));
  }

 public:
  std::string label;
  std::vector<std::string> features;
  std::vector<std::pair<std::string, double> > rvfeatures;

  // obsolete
  void add_feature(const std::pair<std::string, double>& f) {
    rvfeatures.push_back(f);  // real-valued features
  }
};

//
// for those who want to use load_from_array()
//
typedef struct ME_Model_Data {
  char* label;
  char* feature;
  double weight;
} ME_Model_Data;

class ME_Model {
 public:
  void add_training_sample(const ME_Sample& s);
  int train();
  std::vector<double> classify(ME_Sample& s) const;
  bool load_from_file(const std::string& filename);
  bool save_to_file(const std::string& filename, const double th = 0) const;
  int num_classes() const { return _num_classes; }
  std::string get_class_label(int i) const { return _label_bag.Str(i); }
  int get_class_id(const std::string& s) const { return _label_bag.Id(s); }
  void get_features(
      std::list<std::pair<std::pair<std::string, std::string>, double> >& fl);
  void set_heldout(const int h, const int n = 0) {
    _nheldout = h;
    _early_stopping_n = n;
  };
  void use_l1_regularizer(const double v) { _l1reg = v; }
  void use_l2_regularizer(const double v) { _l2reg = v; }
  void use_SGD(int iter = 30, double eta0 = 1, double alpha = 0.85) {
    _optimization_method = SGD;
    SGD_ITER = iter;
    SGD_ETA0 = eta0;
    SGD_ALPHA = alpha;
  }
  bool load_from_array(const ME_Model_Data data[]);
  void set_reference_model(const ME_Model& ref_model) {
    _ref_modelp = &ref_model;
  };
  void clear();

  ME_Model() {
    _l1reg = _l2reg = 0;
    _nheldout = 0;
    _early_stopping_n = 0;
    _ref_modelp = NULL;
    _optimization_method = LBFGS;
  }

 public:
  // obsolete. just for downward compatibility
  int train(const std::vector<ME_Sample>& train);

 private:
  enum OPTIMIZATION_METHOD {
    LBFGS,
    OWLQN,
    SGD
  } _optimization_method;
  // OWLQN and SGD are available only for L1-regularization

  int SGD_ITER;
  double SGD_ETA0;
  double SGD_ALPHA;

  double _l1reg, _l2reg;

  struct Sample {
    int label;
    std::vector<int> positive_features;
    std::vector<std::pair<int, double> > rvfeatures;
    std::vector<double> ref_pd;  // reference probability distribution
    bool operator<(const Sample& x) const {
      for (unsigned int i = 0; i < positive_features.size(); i++) {
        if (i >= x.positive_features.size()) return false;
        int v0 = positive_features[i];
        int v1 = x.positive_features[i];
        if (v0 < v1) return true;
        if (v0 > v1) return false;
      }
      return false;
    }
  };

  struct ME_Feature {
    enum {
      MAX_LABEL_TYPES = 255
    };

    //    ME_Feature(const int l, const int f) : _body((l << 24) + f) {
    //      assert(l >= 0 && l < 256);
    //      assert(f >= 0 && f <= 0xffffff);
    //    };
    //    int label() const { return _body >> 24; }
    //    int feature() const { return _body & 0xffffff; }
    ME_Feature(const int l, const int f) : _body((f << 8) + l) {
      assert(l >= 0 && l <= MAX_LABEL_TYPES);
      assert(f >= 0 && f <= 0xffffff);
    };
    int label() const { return _body & 0xff; }
    int feature() const { return _body >> 8; }
    unsigned int body() const { return _body; }

   private:
    unsigned int _body;
  };

  struct ME_FeatureBag {
#ifdef USE_HASH_MAP
    typedef __gnu_cxx::hash_map<unsigned int, int> map_type;
#else
    typedef std::map<unsigned int, int> map_type;
#endif
    map_type mef2id;
    std::vector<ME_Feature> id2mef;
    int Put(const ME_Feature& i) {
      map_type::const_iterator j = mef2id.find(i.body());
      if (j == mef2id.end()) {
        int id = id2mef.size();
        id2mef.push_back(i);
        mef2id[i.body()] = id;
        return id;
      }
      return j->second;
    }
    int Id(const ME_Feature& i) const {
      map_type::const_iterator j = mef2id.find(i.body());
      if (j == mef2id.end()) {
        return -1;
      }
      return j->second;
    }
    ME_Feature Feature(int id) const {
      assert(id >= 0 && id < (int)id2mef.size());
      return id2mef[id];
    }
    int Size() const { return id2mef.size(); }
    void Clear() {
      mef2id.clear();
      id2mef.clear();
    }
  };

  struct hashfun_str {
    size_t operator()(const std::string& s) const {
      assert(sizeof(int) == 4 && sizeof(char) == 1);
      const int* p = reinterpret_cast<const int*>(s.c_str());
      size_t v = 0;
      int n = s.size() / 4;
      for (int i = 0; i < n; i++, p++) {
        //      v ^= *p;
        v ^= *p << (4 * (i % 2));  // note) 0 <= char < 128
      }
      int m = s.size() % 4;
      for (int i = 0; i < m; i++) {
        v ^= s[4 * n + i] << (i * 8);
      }
      return v;
    }
  };

  struct MiniStringBag {
#ifdef USE_HASH_MAP
    typedef __gnu_cxx::hash_map<std::string, int, hashfun_str> map_type;
#else
    typedef std::map<std::string, int> map_type;
#endif
    int _size;
    map_type str2id;
    MiniStringBag() : _size(0) {}
    int Put(const std::string& i) {
      map_type::const_iterator j = str2id.find(i);
      if (j == str2id.end()) {
        int id = _size;
        _size++;
        str2id[i] = id;
        return id;
      }
      return j->second;
    }
    int Id(const std::string& i) const {
      map_type::const_iterator j = str2id.find(i);
      if (j == str2id.end()) return -1;
      return j->second;
    }
    int Size() const { return _size; }
    void Clear() {
      str2id.clear();
      _size = 0;
    }
    map_type::const_iterator begin() const { return str2id.begin(); }
    map_type::const_iterator end() const { return str2id.end(); }
  };

  struct StringBag : public MiniStringBag {
    std::vector<std::string> id2str;
    int Put(const std::string& i) {
      map_type::const_iterator j = str2id.find(i);
      if (j == str2id.end()) {
        int id = id2str.size();
        id2str.push_back(i);
        str2id[i] = id;
        return id;
      }
      return j->second;
    }
    std::string Str(const int id) const {
      assert(id >= 0 && id < (int)id2str.size());
      return id2str[id];
    }
    int Size() const { return id2str.size(); }
    void Clear() {
      str2id.clear();
      id2str.clear();
    }
  };

  std::vector<Sample> _vs;  // vector of training_samples
  StringBag _label_bag;
  MiniStringBag _featurename_bag;
  std::vector<double> _vl;  // vector of lambda
  ME_FeatureBag _fb;
  int _num_classes;
  std::vector<double> _vee;  // empirical expectation
  std::vector<double> _vme;  // empirical expectation
  std::vector<std::vector<int> > _feature2mef;
  std::vector<Sample> _heldout;
  double _train_error;    // current error rate on the training data
  double _heldout_error;  // current error rate on the heldout data
  int _nheldout;
  int _early_stopping_n;
  std::vector<double> _vhlogl;
  const ME_Model* _ref_modelp;

  double heldout_likelihood();
  int conditional_probability(const Sample& nbs,
                              std::vector<double>& membp) const;
  int make_feature_bag(const int cutoff);
  int classify(const Sample& nbs, std::vector<double>& membp) const;
  double update_model_expectation();
  int perform_QUASI_NEWTON();
  int perform_SGD();
  int perform_GIS(int C);
  std::vector<double> perform_LBFGS(const std::vector<double>& x0);
  std::vector<double> perform_OWLQN(const std::vector<double>& x0,
                                    const double C);
  double backtracking_line_search(const Vec& x0, const Vec& grad0,
                                  const double f0, const Vec& dx, Vec& x,
                                  Vec& grad1);
  double regularized_func_grad(const double C, const Vec& x, Vec& grad);
  double constrained_line_search(double C, const Vec& x0, const Vec& grad0,
                                 const double f0, const Vec& dx, Vec& x,
                                 Vec& grad1);

  void set_ref_dist(Sample& s) const;
  void init_feature2mef();

  double FunctionGradient(const std::vector<double>& x,
                          std::vector<double>& grad);
  static double FunctionGradientWrapper(const std::vector<double>& x,
                                        std::vector<double>& grad);
};

#endif

/*
 * $Log: maxent.h,v $
 * Revision 1.1.1.1  2007/05/15 08:30:35  kyoshida
 * stepp tagger, by Okanohara and Tsuruoka
 *
 * Revision 1.24  2006/08/21 17:30:38  tsuruoka
 * use MAX_LABEL_TYPES
 *
 * Revision 1.23  2006/07/25 13:19:53  tsuruoka
 * sort _vs[]
 *
 * Revision 1.22  2006/07/18 11:13:15  tsuruoka
 * modify comments
 *
 * Revision 1.21  2006/07/18 10:02:15  tsuruoka
 * remove sample2feature[]
 * speed up conditional_probability()
 *
 * Revision 1.20  2006/07/18 05:10:51  tsuruoka
 * add ref_dist
 *
 * Revision 1.19  2005/12/23 10:33:02  tsuruoka
 * support real-valued features
 *
 * Revision 1.18  2005/12/23 09:15:29  tsuruoka
 * modify _train to reduce memory consumption
 *
 * Revision 1.17  2005/10/28 13:02:34  tsuruoka
 * set_heldout(): add default value
 * Feature()
 *
 * Revision 1.16  2005/09/12 13:51:16  tsuruoka
 * Sample: list -> vector
 *
 * Revision 1.15  2005/09/12 13:27:10  tsuruoka
 * add add_training_sample()
 *
 * Revision 1.14  2005/04/27 11:22:27  tsuruoka
 * bugfix
 * ME_Sample: list -> vector
 *
 * Revision 1.13  2005/04/27 10:20:19  tsuruoka
 * MiniStringBag -> StringBag
 *
 * Revision 1.12  2005/04/27 10:00:42  tsuruoka
 * remove tmpfb
 *
 * Revision 1.11  2005/04/26 14:25:53  tsuruoka
 * add MiniStringBag, USE_HASH_MAP
 *
 * Revision 1.10  2004/10/04 05:50:25  tsuruoka
 * add Clear()
 *
 * Revision 1.9  2004/08/09 12:27:21  tsuruoka
 * change messages
 *
 * Revision 1.8  2004/08/04 13:55:19  tsuruoka
 * modify _sample2feature
 *
 * Revision 1.7  2004/07/29 05:51:13  tsuruoka
 * remove modeldata.h
 *
 * Revision 1.6  2004/07/28 13:42:58  tsuruoka
 * add AGIS
 *
 * Revision 1.5  2004/07/28 05:54:14  tsuruoka
 * get_class_name() -> get_class_label()
 * ME_Feature: bugfix
 *
 * Revision 1.4  2004/07/27 16:58:47  tsuruoka
 * modify the interface of classify()
 *
 * Revision 1.3  2004/07/26 17:23:46  tsuruoka
 * _sample2feature: list -> vector
 *
 * Revision 1.2  2004/07/26 15:49:23  tsuruoka
 * modify ME_Feature
 *
 * Revision 1.1  2004/07/26 13:10:55  tsuruoka
 * add files
 *
 * Revision 1.18  2004/07/22 08:34:45  tsuruoka
 * modify _sample2feature[]
 *
 * Revision 1.17  2004/07/21 16:33:01  tsuruoka
 * remove some comments
 *
 */