1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
|
#ifndef MAX_PLUS_H_
#define MAX_PLUS_H_
#include
// max-plus algebra. ordering a > b really means that (i.e. default a<b sorting will do worst (closest to 0) first. so get used to passing predicates like std::greater<MaxPlus<T> > around
// x+y := max{x,y}
// x*y := x+y
// 0 := -inf
// 1 := 0
// additive inverse does not, but mult. does. (inverse()) and x/y := x-y = x+y.inverse()
//WARNING: default order is reversed, on purpose, i.e. a<b means a "better than" b, i.e. log(p_a)>log(p_b). sorry. defaults in libs are to order ascending, but we want best first.
#include <boost/functional/hash.hpp>
#include <iostream>
#include <cstdlib>
#include <cmath>
#include <limits>
#include "semiring.h"
#define TROPICAL_DEBUG(x)
#undef LOGVAL_LOG0
#define LOGVAL_LOG0 -std::numeric_limits<T>::infinity()
template <class T>
class MaxPlus {
public:
typedef MaxPlus<T> Self;
MaxPlus() : v_(LOGVAL_LOG0) {}
explicit MaxPlus(double x) : v_(std::log(x)) {}
MaxPlus(init_1) : v_(0) { }
MaxPlus(init_0) : v_(LOGVAL_LOG0) { }
MaxPlus(int x) : v_(std::log(x)) {}
MaxPlus(unsigned x) : v_(std::log(x)) { }
MaxPlus(double lnx,bool sign) : v_(lnx) { TROPICAL_DEBUG(assert(!sign)); }
MaxPlus(double lnx,init_lnx) : v_(lnx) {}
static Self exp(T lnx) { return MaxPlus(lnx,false); }
// maybe the below are faster than == 1 and == 0. i don't know.
bool is_1() const { return v_==0; }
bool is_0() const { return v_==LOGVAL_LOG0; }
static Self One() { return Self(init_1()); }
static Self Zero() { return Self(init_0()); }
static Self e() { return Self(1,false); }
void logeq(const T& v) { v_ = v; }
bool signbit() const { return false; }
std::size_t hash_impl() const {
using namespace boost;
return hash_value(v_);
}
Self& logpluseq(const Self& a) {
if (a.is_0()) return *this;
if (a.s_ == s_) {
if (a.v_ < v_) {
v_ = v_ + log1p(std::exp(a.v_ - v_));
} else {
v_ = a.v_ + log1p(std::exp(v_ - a.v_));
}
} else {
if (a.v_ < v_) {
v_ = v_ + log1p(-std::exp(a.v_ - v_));
} else {
v_ = a.v_ + log1p(-std::exp(v_ - a.v_));
s_ = !s_;
}
}
return *this;
}
Self& besteq(const Self& a) {
if (a.v_ < v_)
v_=a.v_;
return *this;
}
Self& operator+=(const Self& a) {
if (a.v_ < v_)
v_=a.v_;
return *this;
}
Self& operator*=(const Self& a) {
v_ += a.v_;
return *this;
}
Self& operator/=(const Self& a) {
v_ -= a.v_;
return *this;
}
// Self(fabs(log(x)),x.s_)
friend Self abslog(Self x) {
if (x.v_<0) x.v_=-x.v_;
return x;
}
Self& poweq(const T& power) {
v_ *= power;
return *this;
}
Self inverse() const {
return Self(-v_,false);
}
Self pow(const T& power) const {
Self res = *this;
res.poweq(power);
return res;
}
Self root(const T& root) const {
return pow(1/root);
}
// copy elision - as opposed to explicit copy of Self const& o1, we should be able to construct Logval r=a+(b+c) as a single result in place in r. todo: return std::move(o1) - C++0x
friend inline operator+(Self a,Self const& b) {
a+=b;
return a;
}
friend inline operator*(Self a,Self const& b) {
a*=b;
return a;
}
friend inline operator/(Self a,Self const& b) {
a/=b;
return a;
}
friend inline T log(Self const& a) {
return a.v_;
}
friend inline T pow(Self const& a,T const& e) {
return a.pow(e);
}
// intentionally not defining an operator < or operator > - because you may want to default (for library convenience) a<b means a better than b (i.e. gt)
inline bool lt(Self const& o) const {
return v_<o.v_;
}
inline bool gt(Self const& o) const {
return o.v_<v_;
}
friend inline bool operator==(Self const& lhs, Self const&rhs) {
return lhs.v_ == rhs.v_;
}
friend inline bool operator!=(Self const& lhs, Self const&rhs) {
return lhs.v_ != rhs.v_;
}
/*
operator T() const {
return std::exp(v_);
}
*/
T as_float() const {
return std::exp(v_);
}
T v_;
};
template <class T>
struct semiring_traits<MaxPlus<T> > : default_semiring_traits<MaxPlus<T> > {
static const bool has_logplus=true;
static const bool has_besteq=true;
};
template <class T>
#if 0
template <class T>
bool operator<=(const MaxPlus<T>& lhs, const MaxPlus<T>& rhs) {
return (lhs.v_ <= rhs.v_);
}
template <class T>
bool operator>(const MaxPlus<T>& lhs, const MaxPlus<T>& rhs) {
return (lhs.v_ > rhs.v_);
}
template <class T>
bool operator>=(const MaxPlus<T>& lhs, const MaxPlus<T>& rhs) {
return (lhs.v_ >= rhs.v_);
}
#endif
template <class T>
std::size_t hash_value(const MaxPlus<T>& x) { return x.hash_impl(); }
template <class T>
bool operator==(const MaxPlus<T>& lhs, const MaxPlus<T>& rhs) {
return (lhs.v_ == rhs.v_) && (lhs.s_ == rhs.s_);
}
template <class T>
bool operator!=(const MaxPlus<T>& lhs, const MaxPlus<T>& rhs) {
return !(lhs == rhs);
}
#endif
|