1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
|
#ifndef FTOA_H
#define FTOA_H
//TODO: for fractional digits/non-sci, determine the right amount of left padding (more if the whole number is indeed <1, to keep the significant digits), less if sci notation and/or mantissa has sig. digits (don't want N before . and N after!)
#ifndef FTOA_ROUNDTRIP
# define FTOA_ROUNDTRIP 1
#endif
#ifndef FTOA_DEBUG
# define FTOA_DEBUG 0
#endif
#ifndef FTOA_USE_SPRINTF
#define FTOA_USE_SPRINTF 0
#endif
#if FTOA_DEBUG
# define FTOAassert(x) assert(x)
# define DBFTOA(x) std::cerr<<"\nFTOA " <<__func__<<"("<<__LINE__<<"): " #x "="<<x<<"\n"
# define DBFTOA2(x0,x1) std::cerr<<"\nFTOA " <<__func__<<"("<<__LINE__<<"): " #x0 "="<<x0<<" " #x1 "="<<x1 <<"\n"
#else
# define FTOAassert(x)
# define DBFTOA(x)
# define DBFTOA2(x0,x1)
#endif
/* DECIMAL_FOR_WHOLE ; ftos(123)
0 ; 123
1 ; 123
2 ; 123.
; ftos(0) is always just "0" (not "0.0")
; ftos(.01)
0 ; .01
1 ; 0.01
2 ; 0.01
*/
#ifndef DECIMAL_FOR_WHOLE
# define DECIMAL_FOR_WHOLE 1
#endif
#include <limits>
#include <stdint.h>
#include <iostream>
#include <cmath>
#include <assert.h>
#include <cstdio>
#include "utoa.h"
#include "nan.h"
template <class Float>
struct ftoa_traits {
};
//eP10,
// sigd decimal places normally printed, roundtripd needed so that round-trip float->string->float is identity
#define DEFINE_FTOA_TRAITS(FLOATT,INTT,sigd,roundtripd,small,large,used,P10) \
template <> \
struct ftoa_traits<FLOATT> { \
typedef INTT int_t; \
typedef u ## INTT uint_t; \
typedef FLOATT float_t; \
enum { digits10=std::numeric_limits<INTT>::digits10, chars_block=P10, usedig=used, sigdig=sigd, roundtripdig=roundtripd, bufsize=roundtripdig+7 }; \
static const double pow10_block = 1e ## P10; \
static const float_t small_f = small; \
static const float_t large_f = large; \
static inline int sprintf(char *buf,double f) { return std::sprintf(buf,"%." #used "g",f); } \
static inline int sprintf_sci(char *buf,double f) { return std::sprintf(buf,"%." #used "e",f); } \
static inline int sprintf_nonsci(char *buf,double f) { return std::sprintf(buf,"%." #used "f",f); } \
static inline uint_t fracblock(double frac) { FTOAassert(frac>=0 && frac<1); double f=frac*pow10_block;uint_t i=(uint_t)f;FTOAassert(i<pow10_block);return i; } \
static inline uint_t rounded_fracblock(double frac) { FTOAassert(frac>=0 && frac<1); double f=frac*pow10_block;uint_t i=(uint_t)(f+.5);FTOAassert(i<pow10_block);return i; } \
static inline float_t mantexp10(float_t f,int &exp) { float_t e=std::log10(f); float_t ef=std::floor(e); exp=ef; return f/std::pow((float_t)10,ef); } \
static inline bool use_sci_abs(float_t fa) { return fa<small || fa>large; } \
static inline bool use_sci(float_t f) { return use_sci_abs(std::fabs(f)); } \
};
//TODO: decide on computations in double (would hurt long double) or in native float type - any advantage? more precision is usually better.
//10^22 = 0x1.0f0cf064dd592p73 is the largest exactly representable power of 10 in the binary64 format. but round down to 18 so int64_t can hold it.
#if FTOA_ROUNDTRIP
#define DEFINE_FTOA_TRAITS_ROUNDTRIP(FLOATT,INTT,sigd,roundtripd,small,large) DEFINE_FTOA_TRAITS(FLOATT,INTT,sigd,roundtripd,small,large,roundtripd,roundtripd)
#else
#define DEFINE_FTOA_TRAITS_ROUNDTRIP(FLOATT,INTT,sigd,roundtripd,small,large) DEFINE_FTOA_TRAITS(FLOATT,INTT,sigd,roundtripd,small,large,sigd,sigd)
#endif
DEFINE_FTOA_TRAITS_ROUNDTRIP(double,int64_t,15,17,1e-5,1e8)
//i've heard that 1e10 is fine for float. but we only have 1e9 (9 decimal places) in int32.
DEFINE_FTOA_TRAITS_ROUNDTRIP(float,int32_t,6,9,1e-3,1e8)
template <class F>
inline void ftoa_error(F f,char const* msg="") {
using namespace std;
cerr<<"ftoa error: "<<msg<<" f="<<f<<endl;
assert(!"ftoa error");
}
// all of the below prepend and return new cursor. null terminate yourself (like itoa/utoa)
//possibly empty string for ~0 (no sci notation fallback). left padded with the right number of 0s (tricky). [ret,p) are the digits.
template <class F>
char *prepend_pos_frac_digits(char *p,F f) {
FTOAassert(f<1 && f >0);
typedef ftoa_traits<F> FT;
//repeat if very small??? nah, require sci notation to take care of it.
typename FT::uint_t i=FT::rounded_fracblock(f);
DBFTOA2(f,i);
if (i>0) {
unsigned n_skipped;
char *d=utoa_drop_trailing_0(p,i,n_skipped);
char *b=p-FT::chars_block+n_skipped;
FTOAassert(b<=d);
left_pad(b,d,'0');
return b;
} else {
return p;
}
}
template <class F>
char *append_pos_frac_digits(char *p,F f) { // '0' right-padded, nul terminated, return position of nul. [p,ret) are the digits
if (f==0) {
*p++='0';
return p;
}
FTOAassert(f<1 && f >0);
typedef ftoa_traits<F> FT;
//repeat if very small??? nah, require sci notation to take care of it.
typename FT::uint_t i=FT::rounded_fracblock(f);
DBFTOA2(f,i);
if (i>0) {
char *e=p+FT::chars_block;
utoa_left_pad(p,e,i,'0');
*e=0;
return e;
} else {
*p=0;
return p;
}
}
template <class F>
inline char *prepend_pos_frac(char *p,F f) {
FTOAassert(f<1 && f>=0);
if (f==0) {
*--p='0';
return p;
}
p=prepend_pos_frac_digits(p,f);
*--p='.';
if (DECIMAL_FOR_WHOLE>0)
*--p='0';
return p;
}
template <class F>
inline char *append_pos_frac(char *p,F f) {
DBFTOA(f);
if (DECIMAL_FOR_WHOLE>0)
*p++='0';
*p++='.';
return append_pos_frac_digits(p,f);
}
template <class F>
inline char *prepend_frac(char *p,F f,bool positive_sign=false) {
FTOAassert(f<1 && f>-1);
if (f==0)
*--p='0';
else if (f<0) {
p=prepend_pos_frac(p,-f);
*--p='-';
} else {
p=prepend_pos_frac(p,f);
if (positive_sign)
*--p='+';
}
return p;
}
template <class F>
inline char *append_sign(char *p,F f,bool positive_sign=false) {
if (f<0) {
*p++='-';
} else if (positive_sign)
*p++='+';
return p;
}
template <class F>
inline char *append_frac(char *p,F f,bool positive_sign=false) {
FTOAassert(f<1 && f>-1);
if (f==0) {
*p++='0';
return p;
} else if (f<0) {
*p++='-';
return append_pos_frac(p,-f);
}
if (positive_sign) {
*p++='+';
return append_pos_frac(p,f);
}
}
//append_frac, append_pos_sci, append_sci. notice these are all composed according to a pattern (but reversing order of composition in pre vs app). or can implement with copy through buffer
/* will switch to sci notation if integer part is too big for the int type. but for very small values, will simply display 0 (i.e. //TODO: find out log10 and leftpad 0s then convert rest) */
template <class F>
char *prepend_pos_nonsci(char *p,F f) {
typedef ftoa_traits<F> FT;
typedef typename FT::uint_t uint_t;
DBFTOA(f);
FTOAassert(f>0);
if (f>std::numeric_limits<uint_t>::max())
return prepend_pos_sci(p,f);
//which is faster - modf is weird and returns negative frac part if f is negative. while we could deal with this using fabs, we instead only handle positive here (put - sign in front and negate, then call us) - ?
#if 0
F intpart;
F frac=std::modf(f,&intpart);
uint_t u=intpart;
#else
uint_t u=f;
F frac=f-u;
#endif
DBFTOA2(u,frac);
if (frac == 0) {
if (DECIMAL_FOR_WHOLE>1)
*--p='.';
} else {
p=prepend_pos_frac_digits(p,frac);
*--p='.';
}
if (u==0) {
if (DECIMAL_FOR_WHOLE>0)
*--p='0';
} else
p=utoa(p,u);
}
// modify p; return true if handled
template <class F>
inline bool prepend_0_etc(char *&p,F f,bool positive_sign=false) {
if (f==0) {
*--p='0';
return true;
}
if (is_nan(f)) {
p-=3;
p[0]='N';p[1]='A';p[2]='N';
return true;
}
if (is_pos_inf(f)) {
p-=3;
p[0]='I';p[1]='N';p[2]='F';
if (positive_sign)
*--p='+';
return true;
}
if (is_neg_inf(f)) {
p-=4;
p[0]='-';p[1]='I';p[2]='N';p[3]='F';
return true;
}
return false;
}
template <class F>
inline char *prepend_nonsci(char *p,F f,bool positive_sign=false) {
if (prepend_0_etc(p,f,positive_sign)) return p;
if (f<0) {
p=prepend_pos_nonsci(p,-f);
*--p='-';
} else {
p=prepend_pos_nonsci(p,f);
if (positive_sign)
*--p='+';
}
return p;
}
template <class F>
inline char *prepend_pos_sci(char *p,F f,bool positive_sign_exp=false) {
FTOAassert(f>0);
typedef ftoa_traits<F> FT;
int e10;
F mant=FT::mantexp10(f,e10);
DBFTOA(f);
DBFTOA2(mant,e10);
FTOAassert(mant<10.00001);
if (mant>=10.) {
++e10;
mant*=.1;
} else if (mant < 1.) {
--e10;
mant*=10;
}
p=itoa(p,e10,positive_sign_exp);
*--p='e';
return prepend_pos_nonsci(p,mant);
}
template <class F>
inline char *prepend_sci(char *p,F f,bool positive_sign_mant=false,bool positive_sign_exp=false) {
if (prepend_0_etc(p,f,positive_sign_mant)) return p;
if (f==0)
*--p='0';
else if (f<0) {
p=prepend_pos_sci(p,-f,positive_sign_exp);
*--p='-';
} else {
p=prepend_pos_sci(p,f,positive_sign_exp);
if (positive_sign_mant)
*--p='+';
}
return p;
}
template <class F>
inline char *append_nonsci(char *p,F f,bool positive_sign=false) {
if (positive_sign&&f>=0) *p++='+';
return p+ftoa_traits<F>::sprintf_nonsci(p,f);
}
template <class F>
inline char *append_sci(char *p,F f,bool positive_sign=false) {
if (positive_sign&&f>=0) *p++='+';
return p+ftoa_traits<F>::sprintf_sci(p,f);
}
template <class F>
inline char *append_ftoa(char *p,F f,bool positive_sign=false) {
if (positive_sign&&f>=0) *p++='+';
return p+ftoa_traits<F>::sprintf(p,f);
}
template <class F>
inline char *prepend_ftoa(char *p,F f)
{
typedef ftoa_traits<F> FT;
return FT::use_sci(f) ? prepend_sci(p,f) : prepend_nonsci(p,f);
}
template <class F>
inline std::string ftos_append(F f) {
typedef ftoa_traits<F> FT;
char buf[FT::bufsize];
return std::string(buf,append_ftoa(buf,f));
}
template <class F>
inline std::string ftos_prepend(F f) {
typedef ftoa_traits<F> FT;
char buf[FT::bufsize];
char *end=buf+FT::bufsize;
return std::string(prepend_ftoa(end,f),end);
}
template <class F>
inline std::string ftos(F f) {
#if 0
// trust RVO? no extra copies?
return FTOA_USE_SPRINTF ? ftos_append(f) : ftos_prepend(f);
#else
typedef ftoa_traits<F> FT;
char buf[FT::bufsize];
if (FTOA_USE_SPRINTF) {
return std::string(buf,append_ftoa(buf,f));
} else {
char *end=buf+FT::bufsize;
return std::string(prepend_ftoa(end,f),end);
}
#endif
}
namespace {
const int ftoa_bufsize=30;
char ftoa_outbuf[ftoa_bufsize];
}
// not even THREADLOCAL - don't use.
inline char *static_ftoa(float f)
{
if (FTOA_USE_SPRINTF) {
append_ftoa(ftoa_outbuf,f);
return ftoa_outbuf;
} else {
char *end=ftoa_outbuf+ftoa_bufsize;
return prepend_ftoa(end,f);
}
}
#endif
|