1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
|
#ifndef _CCRP_ONETABLE_H_
#define _CCRP_ONETABLE_H_
#include <numeric>
#include <cassert>
#include <cmath>
#include <list>
#include <iostream>
#include <tr1/unordered_map>
#include <boost/functional/hash.hpp>
#include "sampler.h"
#include "slice_sampler.h"
// Chinese restaurant process (Pitman-Yor parameters) with one table approximation
template <typename Dish, typename DishHash = boost::hash<Dish> >
class CCRP_OneTable {
typedef std::tr1::unordered_map<Dish, unsigned, DishHash> DishMapType;
public:
CCRP_OneTable(double disc, double conc) :
num_tables_(),
num_customers_(),
discount_(disc),
alpha_(conc),
discount_prior_alpha_(std::numeric_limits<double>::quiet_NaN()),
discount_prior_beta_(std::numeric_limits<double>::quiet_NaN()),
alpha_prior_shape_(std::numeric_limits<double>::quiet_NaN()),
alpha_prior_rate_(std::numeric_limits<double>::quiet_NaN()) {}
CCRP_OneTable(double d_alpha, double d_beta, double c_shape, double c_rate, double d = 0.9, double c = 1.0) :
num_tables_(),
num_customers_(),
discount_(d),
alpha_(c),
discount_prior_alpha_(d_alpha),
discount_prior_beta_(d_beta),
alpha_prior_shape_(c_shape),
alpha_prior_rate_(c_rate) {}
double discount() const { return discount_; }
double alpha() const { return alpha_; }
void set_alpha(double c) { alpha_ = c; }
void set_discount(double d) { discount_ = d; }
bool has_discount_prior() const {
return !std::isnan(discount_prior_alpha_);
}
bool has_alpha_prior() const {
return !std::isnan(alpha_prior_shape_);
}
void clear() {
num_tables_ = 0;
num_customers_ = 0;
dish_counts_.clear();
}
unsigned num_tables() const {
return num_tables_;
}
unsigned num_tables(const Dish& dish) const {
const typename DishMapType::const_iterator it = dish_counts_.find(dish);
if (it == dish_counts_.end()) return 0;
return 1;
}
unsigned num_customers() const {
return num_customers_;
}
unsigned num_customers(const Dish& dish) const {
const typename DishMapType::const_iterator it = dish_counts_.find(dish);
if (it == dish_counts_.end()) return 0;
return it->second;
}
// returns +1 or 0 indicating whether a new table was opened
int increment(const Dish& dish) {
unsigned& dc = dish_counts_[dish];
++dc;
++num_customers_;
if (dc == 1) {
++num_tables_;
return 1;
} else {
return 0;
}
}
// returns -1 or 0, indicating whether a table was closed
int decrement(const Dish& dish) {
unsigned& dc = dish_counts_[dish];
assert(dc > 0);
if (dc == 1) {
dish_counts_.erase(dish);
--num_tables_;
--num_customers_;
return -1;
} else {
assert(dc > 1);
--dc;
--num_customers_;
return 0;
}
}
double prob(const Dish& dish, const double& p0) const {
const typename DishMapType::const_iterator it = dish_counts_.find(dish);
const double r = num_tables_ * discount_ + alpha_;
if (it == dish_counts_.end()) {
return r * p0 / (num_customers_ + alpha_);
} else {
return (it->second - discount_ + r * p0) /
(num_customers_ + alpha_);
}
}
template <typename T>
T probT(const Dish& dish, const T& p0) const {
const typename DishMapType::const_iterator it = dish_counts_.find(dish);
const T r(num_tables_ * discount_ + alpha_);
if (it == dish_counts_.end()) {
return r * p0 / T(num_customers_ + alpha_);
} else {
return (T(it->second - discount_) + r * p0) /
T(num_customers_ + alpha_);
}
}
double log_crp_prob() const {
return log_crp_prob(discount_, alpha_);
}
static double log_beta_density(const double& x, const double& alpha, const double& beta) {
assert(x > 0.0);
assert(x < 1.0);
assert(alpha > 0.0);
assert(beta > 0.0);
const double lp = (alpha-1)*log(x)+(beta-1)*log(1-x)+lgamma(alpha+beta)-lgamma(alpha)-lgamma(beta);
return lp;
}
static double log_gamma_density(const double& x, const double& shape, const double& rate) {
assert(x >= 0.0);
assert(shape > 0.0);
assert(rate > 0.0);
const double lp = (shape-1)*log(x) - shape*log(rate) - x/rate - lgamma(shape);
return lp;
}
// taken from http://en.wikipedia.org/wiki/Chinese_restaurant_process
// does not include P_0's
double log_crp_prob(const double& discount, const double& alpha) const {
double lp = 0.0;
if (has_discount_prior())
lp = log_beta_density(discount, discount_prior_alpha_, discount_prior_beta_);
if (has_alpha_prior())
lp += log_gamma_density(alpha, alpha_prior_shape_, alpha_prior_rate_);
assert(lp <= 0.0);
if (num_customers_) {
if (discount > 0.0) {
const double r = lgamma(1.0 - discount);
lp += lgamma(alpha) - lgamma(alpha + num_customers_)
+ num_tables_ * log(discount) + lgamma(alpha / discount + num_tables_)
- lgamma(alpha / discount);
assert(std::isfinite(lp));
for (typename DishMapType::const_iterator it = dish_counts_.begin();
it != dish_counts_.end(); ++it) {
const unsigned& cur = it->second;
lp += lgamma(cur - discount) - r;
}
} else {
assert(!"not implemented yet");
}
}
assert(std::isfinite(lp));
return lp;
}
void resample_hyperparameters(MT19937* rng, const unsigned nloop = 5, const unsigned niterations = 10) {
assert(has_discount_prior() || has_alpha_prior());
DiscountResampler dr(*this);
ConcentrationResampler cr(*this);
for (int iter = 0; iter < nloop; ++iter) {
if (has_alpha_prior()) {
alpha_ = slice_sampler1d(cr, alpha_, *rng, 0.0,
std::numeric_limits<double>::infinity(), 0.0, niterations, 100*niterations);
}
if (has_discount_prior()) {
discount_ = slice_sampler1d(dr, discount_, *rng, std::numeric_limits<double>::min(),
1.0, 0.0, niterations, 100*niterations);
}
}
alpha_ = slice_sampler1d(cr, alpha_, *rng, 0.0,
std::numeric_limits<double>::infinity(), 0.0, niterations, 100*niterations);
}
struct DiscountResampler {
DiscountResampler(const CCRP_OneTable& crp) : crp_(crp) {}
const CCRP_OneTable& crp_;
double operator()(const double& proposed_discount) const {
return crp_.log_crp_prob(proposed_discount, crp_.alpha_);
}
};
struct ConcentrationResampler {
ConcentrationResampler(const CCRP_OneTable& crp) : crp_(crp) {}
const CCRP_OneTable& crp_;
double operator()(const double& proposed_alpha) const {
return crp_.log_crp_prob(crp_.discount_, proposed_alpha);
}
};
void Print(std::ostream* out) const {
(*out) << "PYP(d=" << discount_ << ",c=" << alpha_ << ") customers=" << num_customers_ << std::endl;
for (typename DishMapType::const_iterator it = dish_counts_.begin(); it != dish_counts_.end(); ++it) {
(*out) << " " << it->first << " = " << it->second << std::endl;
}
}
typedef typename DishMapType::const_iterator const_iterator;
const_iterator begin() const {
return dish_counts_.begin();
}
const_iterator end() const {
return dish_counts_.end();
}
unsigned num_tables_;
unsigned num_customers_;
DishMapType dish_counts_;
double discount_;
double alpha_;
// optional beta prior on discount_ (NaN if no prior)
double discount_prior_alpha_;
double discount_prior_beta_;
// optional gamma prior on alpha_ (NaN if no prior)
double alpha_prior_shape_;
double alpha_prior_rate_;
};
template <typename T,typename H>
std::ostream& operator<<(std::ostream& o, const CCRP_OneTable<T,H>& c) {
c.Print(&o);
return o;
}
#endif
|