1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
|
#include <sstream>
#include <iostream>
#include <fstream>
#include <vector>
#include <boost/functional/hash.hpp>
#include <boost/shared_ptr.hpp>
#include <boost/program_options.hpp>
#include <boost/program_options/variables_map.hpp>
#include "candidate_set.h"
#include "sampler.h"
#include "filelib.h"
#include "stringlib.h"
#include "weights.h"
#include "inside_outside.h"
#include "hg_io.h"
#include "ns.h"
#include "ns_docscorer.h"
// This is Figure 4 (Algorithm Sampler) from Hopkins&May (2011)
using namespace std;
namespace po = boost::program_options;
boost::shared_ptr<MT19937> rng;
void InitCommandLine(int argc, char** argv, po::variables_map* conf) {
po::options_description opts("Configuration options");
opts.add_options()
("reference,r",po::value<vector<string> >(), "[REQD] Reference translation (tokenized text)")
("weights,w",po::value<string>(), "[REQD] Weights files from current iterations")
("kbest_repository,K",po::value<string>()->default_value("./kbest"),"K-best list repository (directory)")
("input,i",po::value<string>()->default_value("-"), "Input file to map (- is STDIN)")
("source,s",po::value<string>()->default_value(""), "Source file (ignored, except for AER)")
("evaluation_metric,m",po::value<string>()->default_value("IBM_BLEU"), "Evaluation metric (ibm_bleu, koehn_bleu, nist_bleu, ter, meteor, etc.)")
("kbest_size,k",po::value<unsigned>()->default_value(1500u), "Top k-hypotheses to extract")
("candidate_pairs,G", po::value<unsigned>()->default_value(5000u), "Number of pairs to sample per hypothesis (Gamma)")
("best_pairs,X", po::value<unsigned>()->default_value(50u), "Number of pairs, ranked by magnitude of objective delta, to retain (Xi)")
("random_seed,S", po::value<uint32_t>(), "Random seed (if not specified, /dev/random will be used)")
("help,h", "Help");
po::options_description dcmdline_options;
dcmdline_options.add(opts);
po::store(parse_command_line(argc, argv, dcmdline_options), *conf);
bool flag = false;
if (!conf->count("reference")) {
cerr << "Please specify one or more references using -r <REF.TXT>\n";
flag = true;
}
if (!conf->count("weights")) {
cerr << "Please specify weights using -w <WEIGHTS.TXT>\n";
flag = true;
}
if (flag || conf->count("help")) {
cerr << dcmdline_options << endl;
exit(1);
}
}
struct ThresholdAlpha {
explicit ThresholdAlpha(double t = 0.05) : threshold(t) {}
double operator()(double mag) const {
if (mag < threshold) return 0.0; else return 1.0;
}
const double threshold;
};
struct TrainingInstance {
TrainingInstance(const SparseVector<weight_t>& feats, bool positive, float diff) : x(feats), y(positive), gdiff(diff) {}
SparseVector<weight_t> x;
#undef DEBUGGING_PRO
#ifdef DEBUGGING_PRO
vector<WordID> a;
vector<WordID> b;
#endif
bool y;
float gdiff;
};
#ifdef DEBUGGING_PRO
ostream& operator<<(ostream& os, const TrainingInstance& d) {
return os << d.gdiff << " y=" << d.y << "\tA:" << TD::GetString(d.a) << "\n\tB: " << TD::GetString(d.b) << "\n\tX: " << d.x;
}
#endif
struct DiffOrder {
bool operator()(const TrainingInstance& a, const TrainingInstance& b) const {
return a.gdiff > b.gdiff;
}
};
double LengthDifferenceStdDev(const training::CandidateSet& J_i, int n) {
double sum = 0;
for (int i = 0; i < n; ++i) {
const size_t a = rng->inclusive(0, J_i.size() - 1)();
const size_t b = rng->inclusive(0, J_i.size() - 1)();
if (a == b) { --i; continue; }
double p = J_i[a].ewords.size();
p -= J_i[b].ewords.size();
sum += p * p; // mean is 0 by construction
}
return max(sqrt(sum / n), 2.0);
};
void Sample(const int gamma,
const unsigned xi,
const training::CandidateSet& J_i,
const EvaluationMetric* metric,
vector<TrainingInstance>* pv) {
const double len_stddev = LengthDifferenceStdDev(J_i, 5000);
const bool invert_score = metric->IsErrorMetric();
vector<TrainingInstance> v1, v2;
float avg_diff = 0;
const double z_score_threshold=2;
for (int i = 0; i < gamma; ++i) {
const size_t a = rng->inclusive(0, J_i.size() - 1)();
const size_t b = rng->inclusive(0, J_i.size() - 1)();
if (a == b) { --i; continue; }
double z_score = fabs(((int)J_i[a].ewords.size() - (int)J_i[b].ewords.size()) / len_stddev);
// variation on Nakov et al. (2011)
if (z_score > z_score_threshold) { --i; continue; }
float ga = metric->ComputeScore(J_i[a].eval_feats);
float gb = metric->ComputeScore(J_i[b].eval_feats);
bool positive = gb < ga;
if (invert_score) positive = !positive;
const float gdiff = fabs(ga - gb);
//cerr << ((int)J_i[a].ewords.size() - (int)J_i[b].ewords.size()) << endl;
//cerr << (ga - gb) << endl;
if (!gdiff) continue;
avg_diff += gdiff;
SparseVector<weight_t> xdiff = (J_i[a].fmap - J_i[b].fmap).erase_zeros();
if (xdiff.empty()) {
cerr << "Empty diff:\n " << TD::GetString(J_i[a].ewords) << endl << "x=" << J_i[a].fmap << endl;
cerr << " " << TD::GetString(J_i[b].ewords) << endl << "x=" << J_i[b].fmap << endl;
continue;
}
v1.push_back(TrainingInstance(xdiff, positive, gdiff));
#ifdef DEBUGGING_PRO
v1.back().a = J_i[a].hyp;
v1.back().b = J_i[b].hyp;
cerr << "N: " << v1.back() << endl;
#endif
}
avg_diff /= v1.size();
for (unsigned i = 0; i < v1.size(); ++i) {
double p = 1.0 / (1.0 + exp(-avg_diff - v1[i].gdiff));
// cerr << "avg_diff=" << avg_diff << " gdiff=" << v1[i].gdiff << " p=" << p << endl;
if (rng->next() < p) v2.push_back(v1[i]);
}
vector<TrainingInstance>::iterator mid = v2.begin() + xi;
if (xi > v2.size()) mid = v2.end();
partial_sort(v2.begin(), mid, v2.end(), DiffOrder());
copy(v2.begin(), mid, back_inserter(*pv));
#ifdef DEBUGGING_PRO
if (v2.size() >= 5) {
for (int i =0; i < (mid - v2.begin()); ++i) {
cerr << v2[i] << endl;
}
cerr << pv->back() << endl;
}
#endif
}
int main(int argc, char** argv) {
po::variables_map conf;
InitCommandLine(argc, argv, &conf);
if (conf.count("random_seed"))
rng.reset(new MT19937(conf["random_seed"].as<uint32_t>()));
else
rng.reset(new MT19937);
const string evaluation_metric = conf["evaluation_metric"].as<string>();
EvaluationMetric* metric = EvaluationMetric::Instance(evaluation_metric);
DocumentScorer ds(metric, conf["reference"].as<vector<string> >());
cerr << "Loaded " << ds.size() << " references for scoring with " << evaluation_metric << endl;
Hypergraph hg;
string last_file;
ReadFile in_read(conf["input"].as<string>());
istream &in=*in_read.stream();
const unsigned kbest_size = conf["kbest_size"].as<unsigned>();
const unsigned gamma = conf["candidate_pairs"].as<unsigned>();
const unsigned xi = conf["best_pairs"].as<unsigned>();
string weightsf = conf["weights"].as<string>();
vector<weight_t> weights;
Weights::InitFromFile(weightsf, &weights);
string kbest_repo = conf["kbest_repository"].as<string>();
MkDirP(kbest_repo);
while(in) {
vector<TrainingInstance> v;
string line;
getline(in, line);
if (line.empty()) continue;
istringstream is(line);
int sent_id;
string file;
// path-to-file (JSON) sent_id
is >> file >> sent_id;
ReadFile rf(file);
ostringstream os;
training::CandidateSet J_i;
os << kbest_repo << "/kbest." << sent_id << ".txt.gz";
const string kbest_file = os.str();
if (FileExists(kbest_file))
J_i.ReadFromFile(kbest_file);
HypergraphIO::ReadFromBinary(rf.stream(), &hg);
hg.Reweight(weights);
J_i.AddKBestCandidates(hg, kbest_size, ds[sent_id]);
J_i.WriteToFile(kbest_file);
Sample(gamma, xi, J_i, metric, &v);
for (unsigned i = 0; i < v.size(); ++i) {
const TrainingInstance& vi = v[i];
cout << vi.y << "\t" << vi.x << endl;
cout << (!vi.y) << "\t" << (vi.x * -1.0) << endl;
}
}
return 0;
}
|