summaryrefslogtreecommitdiff
path: root/training/model1.cc
blob: 19692b9a8d54b885712e70b1a823479f754c5e73 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
#include <iostream>
#include <cmath>

#include <boost/program_options.hpp>
#include <boost/program_options/variables_map.hpp>

#include "m.h"
#include "corpus_tools.h"
#include "stringlib.h"
#include "filelib.h"
#include "ttables.h"
#include "tdict.h"

namespace po = boost::program_options;
using namespace std;

bool InitCommandLine(int argc, char** argv, po::variables_map* conf) {
  po::options_description opts("Configuration options");
  opts.add_options()
        ("iterations,i",po::value<unsigned>()->default_value(5),"Number of iterations of EM training")
        ("beam_threshold,t",po::value<double>()->default_value(-4),"log_10 of beam threshold (-10000 to include everything, 0 max)")
        ("bidir,b", "Run bidirectional alignment")
        ("no_null_word,N","Do not generate from the null token")
        ("write_alignments,A", "Write alignments instead of parameters")
        ("favor_diagonal,d", "Use a static alignment distribution that assigns higher probabilities to alignments near the diagonal")
        ("diagonal_tension,T", po::value<double>()->default_value(4.0), "How sharp or flat around the diagonal is the alignment distribution (<1 = flat >1 = sharp)")
        ("prob_align_null", po::value<double>()->default_value(0.08), "When --favor_diagonal is set, what's the probability of a null alignment?")
        ("variational_bayes,v","Add a symmetric Dirichlet prior and infer VB estimate of weights")
        ("testset,x", po::value<string>(), "After training completes, compute the log likelihood of this set of sentence pairs under the learned model")
        ("alpha,a", po::value<double>()->default_value(0.01), "Hyperparameter for optional Dirichlet prior")
        ("no_add_viterbi,V","Do not add Viterbi alignment points (may generate a grammar where some training sentence pairs are unreachable)");
  po::options_description clo("Command line options");
  clo.add_options()
        ("config", po::value<string>(), "Configuration file")
        ("help,h", "Print this help message and exit");
  po::options_description dconfig_options, dcmdline_options;
  dconfig_options.add(opts);
  dcmdline_options.add(opts).add(clo);
  
  po::store(parse_command_line(argc, argv, dcmdline_options), *conf);
  if (conf->count("config")) {
    ifstream config((*conf)["config"].as<string>().c_str());
    po::store(po::parse_config_file(config, dconfig_options), *conf);
  }
  po::notify(*conf);

  if (argc < 2 || conf->count("help")) {
    cerr << "Usage " << argv[0] << " [OPTIONS] corpus.fr-en\n";
    cerr << dcmdline_options << endl;
    return false;
  }
  return true;
}

// src and trg are source and target strings, respectively (not really lattices)
double PosteriorInference(const vector<WordID>& src, const vector<WordID>& trg) {
  double llh = 0;
  static vector<double> unnormed_a_i;
  if (src.size() > unnormed_a_i.size())
    unnormed_a_i.resize(src.size());
  return llh;
}

int main(int argc, char** argv) {
  po::variables_map conf;
  if (!InitCommandLine(argc, argv, &conf)) return 1;
  const string fname = argv[argc - 1];
  const int ITERATIONS = conf["iterations"].as<unsigned>();
  const double BEAM_THRESHOLD = pow(10.0, conf["beam_threshold"].as<double>());
  const bool use_null = (conf.count("no_null_word") == 0);
  const WordID kNULL = TD::Convert("<eps>");
  const bool add_viterbi = (conf.count("no_add_viterbi") == 0);
  const bool variational_bayes = (conf.count("variational_bayes") > 0);
  const bool write_alignments = (conf.count("write_alignments") > 0);
  const double diagonal_tension = conf["diagonal_tension"].as<double>();
  const double prob_align_null = conf["prob_align_null"].as<double>();
  string testset;
  if (conf.count("testset")) testset = conf["testset"].as<string>();
  const double prob_align_not_null = 1.0 - prob_align_null;
  const double alpha = conf["alpha"].as<double>();
  const bool favor_diagonal = conf.count("favor_diagonal");
  if (variational_bayes && alpha <= 0.0) {
    cerr << "--alpha must be > 0\n";
    return 1;
  }

  TTable s2t, t2s;
  TTable::Word2Word2Double s2t_viterbi;
  double tot_len_ratio = 0;
  double mean_srclen_multiplier = 0;
  vector<double> unnormed_a_i;
  for (int iter = 0; iter < ITERATIONS; ++iter) {
    const bool final_iteration = (iter == (ITERATIONS - 1));
    cerr << "ITERATION " << (iter + 1) << (final_iteration ? " (FINAL)" : "") << endl;
    ReadFile rf(fname);
    istream& in = *rf.stream();
    double likelihood = 0;
    double denom = 0.0;
    int lc = 0;
    bool flag = false;
    string line;
    string ssrc, strg;
    while(true) {
      getline(in, line);
      if (!in) break;
      ++lc;
      if (lc % 1000 == 0) { cerr << '.'; flag = true; }
      if (lc %50000 == 0) { cerr << " [" << lc << "]\n" << flush; flag = false; }
      vector<WordID> src, trg;
      CorpusTools::ReadLine(line, &src, &trg);
      if (src.size() == 0 || trg.size() == 0) {
        cerr << "Error: " << lc << "\n" << line << endl;
        return 1;
      }
      if (src.size() > unnormed_a_i.size())
        unnormed_a_i.resize(src.size());
      if (iter == 0)
        tot_len_ratio += static_cast<double>(trg.size()) / static_cast<double>(src.size());
      denom += trg.size();
      vector<double> probs(src.size() + 1);
      bool first_al = true;  // used for write_alignments
      for (int j = 0; j < trg.size(); ++j) {
        const WordID& f_j = trg[j];
        double sum = 0;
        const double j_over_ts = double(j) / trg.size();
        double prob_a_i = 1.0 / (src.size() + use_null);  // uniform (model 1)
        if (use_null) {
          if (favor_diagonal) prob_a_i = prob_align_null;
          probs[0] = s2t.prob(kNULL, f_j) * prob_a_i;
          sum += probs[0];
        }
        double az = 0;
        if (favor_diagonal) {
          for (int ta = 0; ta < src.size(); ++ta) {
            unnormed_a_i[ta] = exp(-fabs(double(ta) / src.size() - j_over_ts) * diagonal_tension);
            az += unnormed_a_i[ta];
          }
          az /= prob_align_not_null;
        }
        for (int i = 1; i <= src.size(); ++i) {
          if (favor_diagonal)
            prob_a_i = unnormed_a_i[i-1] / az;
          probs[i] = s2t.prob(src[i-1], f_j) * prob_a_i;
          sum += probs[i];
        }
        if (final_iteration) {
          if (add_viterbi || write_alignments) {
            WordID max_i = 0;
            double max_p = -1;
            int max_index = -1;
            if (use_null) {
              max_i = kNULL;
              max_index = 0;
              max_p = probs[0];
            }
            for (int i = 1; i <= src.size(); ++i) {
              if (probs[i] > max_p) {
                max_index = i;
                max_p = probs[i];
                max_i = src[i-1];
              }
            }
            if (write_alignments) {
              if (max_index > 0) {
                if (first_al) first_al = false; else cout << ' ';
                cout << (max_index - 1) << "-" << j;
              }
            }
            s2t_viterbi[max_i][f_j] = 1.0;
          }
        } else {
          if (use_null)
            s2t.Increment(kNULL, f_j, probs[0] / sum);
          for (int i = 1; i <= src.size(); ++i)
            s2t.Increment(src[i-1], f_j, probs[i] / sum);
        }
        likelihood += log(sum);
      }
      if (write_alignments && final_iteration) cout << endl;
    }

    // log(e) = 1.0
    double base2_likelihood = likelihood / log(2);

    if (flag) { cerr << endl; }
    if (iter == 0) {
      mean_srclen_multiplier = tot_len_ratio / lc;
      cerr << "expected target length = source length * " << mean_srclen_multiplier << endl;
    }
    cerr << "  log_e likelihood: " << likelihood << endl;
    cerr << "  log_2 likelihood: " << base2_likelihood << endl;
    cerr << "   cross entropy: " << (-base2_likelihood / denom) << endl;
    cerr << "      perplexity: " << pow(2.0, -base2_likelihood / denom) << endl;
    if (!final_iteration) {
      if (variational_bayes)
        s2t.NormalizeVB(alpha);
      else
        s2t.Normalize();
    }
  }
  if (testset.size()) {
    ReadFile rf(testset);
    istream& in = *rf.stream();
    int lc = 0;
    double tlp = 0;
    string ssrc, strg, line;
    while (getline(in, line)) {
      ++lc;
      vector<WordID> src, trg;
      CorpusTools::ReadLine(line, &src, &trg);
      double log_prob = Md::log_poisson(trg.size(), 0.05 + src.size() * mean_srclen_multiplier);
      if (src.size() > unnormed_a_i.size())
        unnormed_a_i.resize(src.size());

      // compute likelihood
      for (int j = 0; j < trg.size(); ++j) {
        const WordID& f_j = trg[j];
        double sum = 0;
        const double j_over_ts = double(j) / trg.size();
        double prob_a_i = 1.0 / (src.size() + use_null);  // uniform (model 1)
        if (use_null) {
          if (favor_diagonal) prob_a_i = prob_align_null;
          sum += s2t.prob(kNULL, f_j) * prob_a_i;
        }
        double az = 0;
        if (favor_diagonal) {
          for (int ta = 0; ta < src.size(); ++ta) {
            unnormed_a_i[ta] = exp(-fabs(double(ta) / src.size() - j_over_ts) * diagonal_tension);
            az += unnormed_a_i[ta];
          }
          az /= prob_align_not_null;
        }
        for (int i = 1; i <= src.size(); ++i) {
          if (favor_diagonal)
            prob_a_i = unnormed_a_i[i-1] / az;
          sum += s2t.prob(src[i-1], f_j) * prob_a_i;
        }
        log_prob += log(sum);
      }
      tlp += log_prob;
      cerr << ssrc << " ||| " << strg << " ||| " << log_prob << endl;
    }
    cerr << "TOTAL LOG PROB " << tlp << endl;
  }

  if (write_alignments) return 0;

  for (TTable::Word2Word2Double::iterator ei = s2t.ttable.begin(); ei != s2t.ttable.end(); ++ei) {
    const TTable::Word2Double& cpd = ei->second;
    const TTable::Word2Double& vit = s2t_viterbi[ei->first];
    const string& esym = TD::Convert(ei->first);
    double max_p = -1;
    for (TTable::Word2Double::const_iterator fi = cpd.begin(); fi != cpd.end(); ++fi)
      if (fi->second > max_p) max_p = fi->second;
    const double threshold = max_p * BEAM_THRESHOLD;
    for (TTable::Word2Double::const_iterator fi = cpd.begin(); fi != cpd.end(); ++fi) {
      if (fi->second > threshold || (vit.find(fi->first) != vit.end())) {
        cout << esym << ' ' << TD::Convert(fi->first) << ' ' << log(fi->second) << endl;
      }
    } 
  }
  return 0;
}