summaryrefslogtreecommitdiff
path: root/training/minrisk/minrisk_optimize.cc
blob: f90c7118a9117f114cb900acf78cc68b89c4eee5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
#include <sstream>
#include <iostream>
#include <vector>
#include <limits>

#include <boost/program_options.hpp>
#include <boost/program_options/variables_map.hpp>

#include "liblbfgs/lbfgs++.h"
#include "filelib.h"
#include "stringlib.h"
#include "weights.h"
#include "hg_io.h"
#include "kbest.h"
#include "viterbi.h"
#include "ns.h"
#include "ns_docscorer.h"
#include "candidate_set.h"
#include "risk.h"
#include "entropy.h"

using namespace std;
namespace po = boost::program_options;

void InitCommandLine(int argc, char** argv, po::variables_map* conf) {
  po::options_description opts("Configuration options");
  opts.add_options()
        ("reference,r",po::value<vector<string> >(), "[REQD] Reference translation (tokenized text)")
        ("weights,w",po::value<string>(), "[REQD] Weights files from current iterations")
        ("input,i",po::value<string>()->default_value("-"), "Input file to map (- is STDIN)")
        ("evaluation_metric,m",po::value<string>()->default_value("IBM_BLEU"), "Evaluation metric (ibm_bleu, koehn_bleu, nist_bleu, ter, meteor, etc.)")
        ("temperature,T",po::value<double>()->default_value(0.0), "Temperature parameter for objective (>0 increases the entropy)")
        ("l1_strength,C",po::value<double>()->default_value(0.0), "L1 regularization strength")
        ("memory_buffers,M",po::value<unsigned>()->default_value(20), "Memory buffers used in LBFGS")
        ("kbest_repository,R",po::value<string>(), "Accumulate k-best lists from previous iterations (parameter is path to repository)")
        ("kbest_size,k",po::value<unsigned>()->default_value(500u), "Top k-hypotheses to extract")
        ("help,h", "Help");
  po::options_description dcmdline_options;
  dcmdline_options.add(opts);
  po::store(parse_command_line(argc, argv, dcmdline_options), *conf);
  bool flag = false;
  if (!conf->count("reference")) {
    cerr << "Please specify one or more references using -r <REF.TXT>\n";
    flag = true;
  }
  if (!conf->count("weights")) {
    cerr << "Please specify weights using -w <WEIGHTS.TXT>\n";
    flag = true;
  }
  if (flag || conf->count("help")) {
    cerr << dcmdline_options << endl;
    exit(1);
  }
}

EvaluationMetric* metric = NULL;

struct RiskObjective {
  explicit RiskObjective(const vector<training::CandidateSet>& tr, const double temp) : training(tr), T(temp) {}
  double operator()(const vector<double>& x, double* g) const {
    fill(g, g + x.size(), 0.0);
    double obj = 0;
    double h = 0;
    for (unsigned i = 0; i < training.size(); ++i) {
      training::CandidateSetRisk risk(training[i], *metric);
      training::CandidateSetEntropy entropy(training[i]);
      SparseVector<double> tg, hg;
      double r = risk(x, &tg);
      double hh = entropy(x, &hg);
      h += hh;
      obj += r;
      for (SparseVector<double>::iterator it = tg.begin(); it != tg.end(); ++it)
        g[it->first] += it->second;
      if (T) {
        for (SparseVector<double>::iterator it = hg.begin(); it != hg.end(); ++it)
          g[it->first] += T * it->second;
      }
    }
    cerr << (1-(obj / training.size())) << "  H=" << h << endl;
    return obj - T * h;
  }
  const vector<training::CandidateSet>& training;
  const double T; // temperature for entropy regularization
};  

double LearnParameters(const vector<training::CandidateSet>& training,
                       const double temp, // > 0 increases the entropy, < 0 decreases the entropy
                       const double C1,
                       const unsigned memory_buffers,
                       vector<weight_t>* px) {
  RiskObjective obj(training, temp);
  LBFGS<RiskObjective> lbfgs(px, obj, memory_buffers, C1);
  lbfgs.MinimizeFunction();
  return 0;
}

#if 0
struct FooLoss {
  double operator()(const vector<double>& x, double* g) const {
    fill(g, g + x.size(), 0.0);
    training::CandidateSet cs;
    training::CandidateSetEntropy cse(cs);
    cs.cs.resize(3);
    cs.cs[0].fmap.set_value(FD::Convert("F1"), -1.0);
    cs.cs[1].fmap.set_value(FD::Convert("F2"), 1.0);
    cs.cs[2].fmap.set_value(FD::Convert("F1"), 2.0);
    cs.cs[2].fmap.set_value(FD::Convert("F2"), 0.5);
    SparseVector<double> xx;
    double h = cse(x, &xx);
    cerr << cse(x, &xx) << endl; cerr << "G: " << xx << endl;
    for (SparseVector<double>::iterator i = xx.begin(); i != xx.end(); ++i)
      g[i->first] += i->second;
    return -h;
  }
};
#endif

int main(int argc, char** argv) {
#if 0
  training::CandidateSet cs;
  training::CandidateSetEntropy cse(cs);
  cs.cs.resize(3);
  cs.cs[0].fmap.set_value(FD::Convert("F1"), -1.0);
  cs.cs[1].fmap.set_value(FD::Convert("F2"), 1.0);
  cs.cs[2].fmap.set_value(FD::Convert("F1"), 2.0);
  cs.cs[2].fmap.set_value(FD::Convert("F2"), 0.5);
  FooLoss foo;
  vector<double> ww(FD::NumFeats()); ww[FD::Convert("F1")] = 1.0;
  LBFGS<FooLoss> lbfgs(&ww, foo, 100, 0.0);
  lbfgs.MinimizeFunction();
  return 1;
#endif
  po::variables_map conf;
  InitCommandLine(argc, argv, &conf);
  const string evaluation_metric = conf["evaluation_metric"].as<string>();

  metric = EvaluationMetric::Instance(evaluation_metric);
  DocumentScorer ds(metric, conf["reference"].as<vector<string> >());
  cerr << "Loaded " << ds.size() << " references for scoring with " << evaluation_metric << endl;

  Hypergraph hg;
  string last_file;
  ReadFile in_read(conf["input"].as<string>());
  string kbest_repo;
  if (conf.count("kbest_repository")) {
    kbest_repo = conf["kbest_repository"].as<string>();
    MkDirP(kbest_repo);
  }
  istream &in=*in_read.stream();
  const unsigned kbest_size = conf["kbest_size"].as<unsigned>();
  vector<weight_t> weights;
  const string weightsf = conf["weights"].as<string>();
  Weights::InitFromFile(weightsf, &weights);
  double t = 0;
  for (unsigned i = 0; i < weights.size(); ++i)
    t += weights[i] * weights[i];
  if (t > 0) {
    for (unsigned i = 0; i < weights.size(); ++i)
      weights[i] /= sqrt(t);
  }
  string line, file;
  vector<training::CandidateSet> kis;
  cerr << "Loading hypergraphs...\n";
  while(getline(in, line)) {
    istringstream is(line);
    int sent_id = 0;
    kis.resize(kis.size() + 1);
    training::CandidateSet& curkbest = kis.back();
    string kbest_file;
    if (kbest_repo.size()) {
      ostringstream os;
      os << kbest_repo << "/kbest." << sent_id << ".txt.gz";
      kbest_file = os.str();
      if (FileExists(kbest_file))
        curkbest.ReadFromFile(kbest_file);
    }
    is >> file >> sent_id;
    ReadFile rf(file);
    if (kis.size() % 5 == 0) { cerr << '.'; }
    if (kis.size() % 200 == 0) { cerr << " [" << kis.size() << "]\n"; }
    HypergraphIO::ReadFromBinary(rf.stream(), &hg);
    hg.Reweight(weights);
    curkbest.AddKBestCandidates(hg, kbest_size, ds[sent_id]);
    if (kbest_file.size())
      curkbest.WriteToFile(kbest_file);
  }
  cerr << "\nHypergraphs loaded.\n";
  weights.resize(FD::NumFeats());

  double c1 = conf["l1_strength"].as<double>();
  double temp = conf["temperature"].as<double>();
  unsigned m = conf["memory_buffers"].as<unsigned>();
  LearnParameters(kis, temp, c1, m, &weights);
  Weights::WriteToFile("-", weights);
  return 0;
}