1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
|
/*
Points to note regarding variable names:
total_loss and prev_loss actually refer not to loss, but the metric (usually BLEU)
*/
#include <sstream>
#include <iostream>
#include <vector>
#include <cassert>
#include <cmath>
//boost libraries
#include <boost/shared_ptr.hpp>
#include <boost/program_options.hpp>
#include <boost/program_options/variables_map.hpp>
//cdec libraries
#include "config.h"
#include "hg_sampler.h"
#include "sentence_metadata.h"
#include "scorer.h"
#include "verbose.h"
#include "viterbi.h"
#include "hg.h"
#include "prob.h"
#include "kbest.h"
#include "ff_register.h"
#include "decoder.h"
#include "filelib.h"
#include "fdict.h"
#include "weights.h"
#include "sparse_vector.h"
#include "sampler.h"
using namespace std;
using boost::shared_ptr;
namespace po = boost::program_options;
bool invert_score;
boost::shared_ptr<MT19937> rng; //random seed ptr
void RandomPermutation(int len, vector<int>* p_ids) {
vector<int>& ids = *p_ids;
ids.resize(len);
for (int i = 0; i < len; ++i) ids[i] = i;
for (int i = len; i > 0; --i) {
int j = rng->next() * i;
if (j == i) i--;
swap(ids[i-1], ids[j]);
}
}
bool InitCommandLine(int argc, char** argv, po::variables_map* conf) {
po::options_description opts("Configuration options");
opts.add_options()
("weights,w",po::value<string>(),"[REQD] Input feature weights file")
("input,i",po::value<string>(),"[REQD] Input source file for development set")
("passes,p", po::value<int>()->default_value(15), "Number of passes through the training data")
("weights_write_interval,n", po::value<int>()->default_value(1000), "Number of lines between writing out weights")
("reference,r",po::value<vector<string> >(), "[REQD] Reference translation(s) (tokenized text file)")
("mt_metric,m",po::value<string>()->default_value("ibm_bleu"), "Scoring metric (ibm_bleu, nist_bleu, koehn_bleu, ter, combi)")
("regularizer_strength,C", po::value<double>()->default_value(0.01), "regularization strength")
("mt_metric_scale,s", po::value<double>()->default_value(1.0), "Cost function is -mt_metric_scale*BLEU")
("costaug_log_bleu,l", "Flag converts BLEU to log space. Cost function is thus -mt_metric_scale*log(BLEU). Not on by default")
("average,A", "Average the weights (this is a weighted average due to the scaling factor)")
("mu,u", po::value<double>()->default_value(0.0), "weight (between 0 and 1) to scale model score by for oracle selection")
("stepsize_param,a", po::value<double>()->default_value(0.01), "Stepsize parameter, during optimization")
("stepsize_reduce,t", "Divide step size by sqrt(number of examples seen so far), as per Ratliff et al., 2007")
("metric_threshold,T", po::value<double>()->default_value(0.0), "Threshold for diff between oracle BLEU and cost-aug BLEU for updating the weights")
("check_positive,P", "Check that the loss is positive before updating")
("k_best_size,k", po::value<int>()->default_value(250), "Size of hypothesis list to search for oracles")
("best_ever,b", "Keep track of the best hypothesis we've ever seen (metric score), and use that as the reference")
("random_seed,S", po::value<uint32_t>(), "Random seed (if not specified, /dev/random will be used)")
("decoder_config,c",po::value<string>(),"Decoder configuration file");
po::options_description clo("Command line options");
clo.add_options()
("config", po::value<string>(), "Configuration file")
("help,h", "Print this help message and exit");
po::options_description dconfig_options, dcmdline_options;
dconfig_options.add(opts);
dcmdline_options.add(opts).add(clo);
po::store(parse_command_line(argc, argv, dcmdline_options), *conf);
if (conf->count("config")) {
ifstream config((*conf)["config"].as<string>().c_str());
po::store(po::parse_config_file(config, dconfig_options), *conf);
}
po::notify(*conf);
if (conf->count("help") || !conf->count("weights") || !conf->count("input") || !conf->count("decoder_config") || !conf->count("reference")) {
cerr << dcmdline_options << endl;
return false;
}
return true;
}
double scaling_trick = 1; // see http://blog.smola.org/post/940672544/fast-quadratic-regularization-for-online-learning
/*computes and returns cost augmented score for negative example selection*/
double cost_augmented_score(const LogVal<double> model_score, const double mt_metric_score, const double mt_metric_scale, const bool logbleu) {
if(logbleu) {
if(mt_metric_score != 0)
// NOTE: log(model_score) is just the model score feature weights * features
return log(model_score) * scaling_trick + (- mt_metric_scale * log(mt_metric_score));
else
return -1000000;
}
// NOTE: log(model_score) is just the model score feature weights * features
return log(model_score) * scaling_trick + (- mt_metric_scale * mt_metric_score);
}
/*computes and returns mu score, for oracle selection*/
double muscore(const vector<weight_t>& feature_weights, const SparseVector<double>& feature_values, const double mt_metric_score, const double mu, const bool logbleu) {
if(logbleu) {
if(mt_metric_score != 0)
return feature_values.dot(feature_weights) * mu + (1 - mu) * log(mt_metric_score);
else
return feature_values.dot(feature_weights) * mu + (1 - mu) * (-1000000); // log(0) is -inf
}
return feature_values.dot(feature_weights) * mu + (1 - mu) * mt_metric_score;
}
static const double kMINUS_EPSILON = -1e-6;
struct HypothesisInfo {
SparseVector<double> features;
double mt_metric_score;
// The model score changes when the feature weights change, so it is not stored here
// It must be recomputed every time
};
struct GoodOracle {
shared_ptr<HypothesisInfo> good;
};
struct TrainingObserver : public DecoderObserver {
TrainingObserver(const int k,
const DocScorer& d,
vector<GoodOracle>* o,
const vector<weight_t>& feat_weights,
const double metric_scale,
const double Mu,
const bool bestever,
const bool LogBleu) : ds(d), feature_weights(feat_weights), oracles(*o), kbest_size(k), mt_metric_scale(metric_scale), mu(Mu), best_ever(bestever), log_bleu(LogBleu) {}
const DocScorer& ds;
const vector<weight_t>& feature_weights;
vector<GoodOracle>& oracles;
shared_ptr<HypothesisInfo> cur_best;
shared_ptr<HypothesisInfo> cur_costaug_best;
shared_ptr<HypothesisInfo> cur_ref;
const int kbest_size;
const double mt_metric_scale;
const double mu;
const bool best_ever;
const bool log_bleu;
const HypothesisInfo& GetCurrentBestHypothesis() const {
return *cur_best;
}
const HypothesisInfo& GetCurrentCostAugmentedHypothesis() const {
return *cur_costaug_best;
}
const HypothesisInfo& GetCurrentReference() const {
return *cur_ref;
}
virtual void NotifyTranslationForest(const SentenceMetadata& smeta, Hypergraph* hg) {
UpdateOracles(smeta.GetSentenceID(), *hg);
}
shared_ptr<HypothesisInfo> MakeHypothesisInfo(const SparseVector<double>& feats, const double metric) {
shared_ptr<HypothesisInfo> h(new HypothesisInfo);
h->features = feats;
h->mt_metric_score = metric;
return h;
}
void UpdateOracles(int sent_id, const Hypergraph& forest) {
//shared_ptr<HypothesisInfo>& cur_ref = oracles[sent_id].good;
cur_ref = oracles[sent_id].good;
if(!best_ever)
cur_ref.reset();
KBest::KBestDerivations<vector<WordID>, ESentenceTraversal> kbest(forest, kbest_size);
double costaug_best_score = 0;
for (int i = 0; i < kbest_size; ++i) {
const KBest::KBestDerivations<vector<WordID>, ESentenceTraversal>::Derivation* d =
kbest.LazyKthBest(forest.nodes_.size() - 1, i);
if (!d) break;
double mt_metric_score = ds[sent_id]->ScoreCandidate(d->yield)->ComputeScore(); //this might need to change!!
const SparseVector<double>& feature_vals = d->feature_values;
double costaugmented_score = cost_augmented_score(d->score, mt_metric_score, mt_metric_scale, log_bleu); //note that d->score, i.e., model score, is passed in
if (i == 0) { //i.e., setting up cur_best to be model score highest, and initializing costaug_best
cur_best = MakeHypothesisInfo(feature_vals, mt_metric_score);
cur_costaug_best = cur_best;
costaug_best_score = costaugmented_score;
}
if (costaugmented_score > costaug_best_score) { // kbest_mira's cur_bad, i.e., "fear" derivation
cur_costaug_best = MakeHypothesisInfo(feature_vals, mt_metric_score);
costaug_best_score = costaugmented_score;
}
double cur_muscore = mt_metric_score;
if (!cur_ref) // kbest_mira's cur_good, i.e., "hope" derivation
cur_ref = MakeHypothesisInfo(feature_vals, cur_muscore);
else {
double cur_ref_muscore = cur_ref->mt_metric_score;
if(mu > 0) { //select oracle with mixture of model score and BLEU
cur_ref_muscore = muscore(feature_weights, cur_ref->features, cur_ref->mt_metric_score, mu, log_bleu);
cur_muscore = muscore(feature_weights, d->feature_values, mt_metric_score, mu, log_bleu);
}
if (cur_muscore > cur_ref_muscore) //replace oracle
cur_ref = MakeHypothesisInfo(feature_vals, mt_metric_score);
}
}
}
};
void ReadTrainingCorpus(const string& fname, vector<string>* c) {
ReadFile rf(fname);
istream& in = *rf.stream();
string line;
while(in) {
getline(in, line);
if (!in) break;
c->push_back(line);
}
}
bool ApproxEqual(double a, double b) {
if (a == b) return true;
return (fabs(a-b)/fabs(b)) < 0.000001;
}
int main(int argc, char** argv) {
register_feature_functions();
SetSilent(true); // turn off verbose decoder output
po::variables_map conf;
if (!InitCommandLine(argc, argv, &conf)) return 1;
if (conf.count("random_seed"))
rng.reset(new MT19937(conf["random_seed"].as<uint32_t>()));
else
rng.reset(new MT19937);
const bool best_ever = conf.count("best_ever") > 0;
vector<string> corpus;
ReadTrainingCorpus(conf["input"].as<string>(), &corpus);
const string metric_name = conf["mt_metric"].as<string>(); //set up scoring; this may need to be changed!!
ScoreType type = ScoreTypeFromString(metric_name);
if (type == TER) {
invert_score = true;
} else {
invert_score = false;
}
DocScorer ds(type, conf["reference"].as<vector<string> >(), "");
cerr << "Loaded " << ds.size() << " references for scoring with " << metric_name << endl;
if (ds.size() != corpus.size()) {
cerr << "Mismatched number of references (" << ds.size() << ") and sources (" << corpus.size() << ")\n";
return 1;
}
ReadFile ini_rf(conf["decoder_config"].as<string>());
Decoder decoder(ini_rf.stream());
// load initial weights
vector<weight_t>& decoder_weights = decoder.CurrentWeightVector(); //equivalent to "dense_weights" vector in kbest_mira.cc
SparseVector<weight_t> sparse_weights; //equivaelnt to kbest_mira.cc "lambdas"
Weights::InitFromFile(conf["weights"].as<string>(), &decoder_weights);
Weights::InitSparseVector(decoder_weights, &sparse_weights);
//initializing other algorithm and output parameters
const double c = conf["regularizer_strength"].as<double>();
const int weights_write_interval = conf["weights_write_interval"].as<int>();
const double mt_metric_scale = conf["mt_metric_scale"].as<double>();
const double mu = conf["mu"].as<double>();
const double metric_threshold = conf["metric_threshold"].as<double>();
const double stepsize_param = conf["stepsize_param"].as<double>(); //step size in structured SGD optimization step
const bool stepsize_reduce = conf.count("stepsize_reduce") > 0;
const bool costaug_log_bleu = conf.count("costaug_log_bleu") > 0;
const bool average = conf.count("average") > 0;
const bool checkpositive = conf.count("check_positive") > 0;
assert(corpus.size() > 0);
vector<GoodOracle> oracles(corpus.size());
TrainingObserver observer(conf["k_best_size"].as<int>(), // kbest size
ds, // doc scorer
&oracles,
decoder_weights,
mt_metric_scale,
mu,
best_ever,
costaug_log_bleu);
int cur_sent = 0;
int line_count = 0;
int normalizer = 0;
double total_loss = 0;
double prev_loss = 0;
int dots = 0; // progess bar
int cur_pass = 0;
SparseVector<double> tot;
tot += sparse_weights; //add initial weights to total
normalizer++; //add 1 to normalizer
int max_iteration = conf["passes"].as<int>();
string msg = "# LatentSVM tuned weights";
vector<int> order;
int interval_counter = 0;
RandomPermutation(corpus.size(), &order); //shuffle corpus
while (line_count <= max_iteration * corpus.size()) { //loop over all (passes * num sentences) examples
//if ((interval_counter * 40 / weights_write_interval) > dots) { ++dots; cerr << '.'; } //check this
if ((cur_sent * 40 / corpus.size()) > dots) { ++dots; cerr << '.';}
if (interval_counter == weights_write_interval) { //i.e., we need to write out weights
sparse_weights *= scaling_trick;
tot *= scaling_trick;
scaling_trick = 1;
cerr << " [SENTENCE NUMBER= " << cur_sent << "\n";
cerr << " [AVG METRIC LAST INTERVAL =" << ((total_loss - prev_loss) / weights_write_interval) << "]\n";
cerr << " [AVG METRIC THIS PASS THUS FAR =" << (total_loss / cur_sent) << "]\n";
cerr << " [TOTAL LOSS: =" << total_loss << "\n";
Weights::ShowLargestFeatures(decoder_weights);
//dots = 0;
interval_counter = 0;
prev_loss = total_loss;
if (average){
SparseVector<double> x = tot;
x /= normalizer;
ostringstream sa;
sa << "weights.latentsvm-" << line_count/weights_write_interval << "-avg.gz";
x.init_vector(&decoder_weights);
Weights::WriteToFile(sa.str(), decoder_weights, true, &msg);
}
else {
ostringstream os;
os << "weights.latentsvm-" << line_count/weights_write_interval << ".gz";
sparse_weights.init_vector(&decoder_weights);
Weights::WriteToFile(os.str(), decoder_weights, true, &msg);
}
}
if (corpus.size() == cur_sent) { //i.e., finished a pass
//cerr << " [AVG METRIC LAST PASS=" << (document_metric_score / corpus.size()) << "]\n";
cerr << " [AVG METRIC LAST PASS=" << (total_loss / corpus.size()) << "]\n";
cerr << " TOTAL LOSS: " << total_loss << "\n";
Weights::ShowLargestFeatures(decoder_weights);
cur_sent = 0;
total_loss = 0;
dots = 0;
if(average) {
SparseVector<double> x = tot;
x /= normalizer;
ostringstream sa;
sa << "weights.latentsvm-pass" << (cur_pass < 10 ? "0" : "") << cur_pass << "-avg.gz";
x.init_vector(&decoder_weights);
Weights::WriteToFile(sa.str(), decoder_weights, true, &msg);
}
else {
ostringstream os;
os << "weights.latentsvm-pass" << (cur_pass < 10 ? "0" : "") << cur_pass << ".gz";
Weights::WriteToFile(os.str(), decoder_weights, true, &msg);
}
cur_pass++;
RandomPermutation(corpus.size(), &order);
}
if (cur_sent == 0) { //i.e., starting a new pass
cerr << "PASS " << (line_count / corpus.size() + 1) << endl;
}
sparse_weights.init_vector(&decoder_weights); // copy sparse_weights to the decoder weights
decoder.SetId(order[cur_sent]); //assign current sentence
decoder.Decode(corpus[order[cur_sent]], &observer); // decode/update oracles
const HypothesisInfo& cur_best = observer.GetCurrentBestHypothesis(); //model score best
const HypothesisInfo& cur_costaug = observer.GetCurrentCostAugmentedHypothesis(); //(model + cost) best; cost = -metric_scale*log(BLEU) or -metric_scale*BLEU
//const HypothesisInfo& cur_ref = *oracles[order[cur_sent]].good; //this oracle-best line only picks based on BLEU
const HypothesisInfo& cur_ref = observer.GetCurrentReference(); //if mu > 0, this mu-mixed oracle will be picked; otherwise, only on BLEU
total_loss += cur_best.mt_metric_score;
double step_size = stepsize_param;
if (stepsize_reduce){ // w_{t+1} = w_t - stepsize_t * grad(Loss)
step_size /= (sqrt(cur_sent+1.0));
}
//actual update step - compute gradient, and modify sparse_weights
if(cur_ref.mt_metric_score - cur_costaug.mt_metric_score > metric_threshold) {
const double loss = (cur_costaug.features.dot(decoder_weights) - cur_ref.features.dot(decoder_weights)) * scaling_trick + mt_metric_scale * (cur_ref.mt_metric_score - cur_costaug.mt_metric_score);
if (!checkpositive || loss > 0.0) { //can update either all the time if check positive is off, or only when loss > 0 if it's on
sparse_weights -= cur_costaug.features * step_size / ((1.0-2.0*step_size*c)*scaling_trick); // cost augmented hyp orig -
sparse_weights += cur_ref.features * step_size / ((1.0-2.0*step_size*c)*scaling_trick); // ref orig +
}
}
scaling_trick *= (1.0 - 2.0 * step_size * c);
tot += sparse_weights; //for averaging purposes
normalizer++; //for averaging purposes
line_count++;
interval_counter++;
cur_sent++;
}
cerr << endl;
if(average) {
tot /= normalizer;
tot.init_vector(decoder_weights);
msg = "# Latent SSVM tuned weights (averaged vector)";
Weights::WriteToFile("weights.latentsvm-final-avg.gz", decoder_weights, true, &msg);
cerr << "Optimization complete.\n" << "AVERAGED WEIGHTS: weights.latentsvm-final-avg.gz\n";
} else {
Weights::WriteToFile("weights.latentsvm-final.gz", decoder_weights, true, &msg);
cerr << "Optimization complete.\n";
}
return 0;
}
|