1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
|
#ifndef _DTRAIN_H_
#define _DTRAIN_H_
#include <iomanip>
#include <climits>
#include <string.h>
#include <boost/algorithm/string.hpp>
#include <boost/regex.hpp>
#include <boost/algorithm/string/regex.hpp>
#include <boost/program_options.hpp>
#include "decoder.h"
#include "ff_register.h"
#include "sentence_metadata.h"
#include "verbose.h"
#include "viterbi.h"
using namespace std;
namespace po = boost::program_options;
namespace dtrain
{
struct ScoredHyp
{
vector<WordID> w;
SparseVector<weight_t> f;
weight_t model, gold;
size_t rank;
};
inline void
PrintWordIDVec(vector<WordID>& v, ostream& os=cerr)
{
for (size_t i = 0; i < v.size(); i++) {
os << TD::Convert(v[i]);
if (i < v.size()-1) os << " ";
}
}
inline ostream& _np(ostream& out) { return out << resetiosflags(ios::showpos); }
inline ostream& _p(ostream& out) { return out << setiosflags(ios::showpos); }
inline ostream& _p4(ostream& out) { return out << setprecision(4); }
bool
dtrain_init(int argc, char** argv, po::variables_map* conf)
{
po::options_description opts("Configuration File Options");
opts.add_options()
("bitext,b", po::value<string>(), "bitext")
("decoder_conf,C", po::value<string>(), "configuration file for decoder")
("iterations,T", po::value<size_t>()->default_value(15), "number of iterations T (per shard)")
("k", po::value<size_t>()->default_value(100), "size of kbest list")
("learning_rate,l", po::value<weight_t>()->default_value(0.00001), "learning rate")
("l1_reg,r", po::value<weight_t>()->default_value(0.), "l1 regularization strength")
("margin,m", po::value<weight_t>()->default_value(1.0), "margin for margin perceptron")
("score,s", po::value<string>()->default_value("chiang"), "per-sentence BLEU approx.")
("N", po::value<size_t>()->default_value(4), "N for BLEU approximation")
("input_weights,w", po::value<string>(), "input weights file")
("average,a", po::bool_switch()->default_value(true), "output average weights")
("keep,K", po::bool_switch()->default_value(false), "output a weight file per iteration")
("struct,S", po::bool_switch()->default_value(false), "structured SGD with hope/fear")
("output,o", po::value<string>()->default_value("-"), "output weights file, '-' for STDOUT")
("disable_learning,X", po::bool_switch()->default_value(false), "disable learning")
("output_data,D", po::value<string>()->default_value(""), "output data to STDOUT; arg. is 'kbest', 'default' or 'all'")
("print_weights,P", po::value<string>()->default_value("EgivenFCoherent SampleCountF CountEF MaxLexFgivenE MaxLexEgivenF IsSingletonF IsSingletonFE Glue WordPenalty PassThrough LanguageModel LanguageModel_OOV"),
"list of weights to print after each iteration");
po::options_description clopts("Command Line Options");
clopts.add_options()
("conf,c", po::value<string>(), "dtrain configuration file")
("help,h", po::bool_switch(), "display options");
opts.add(clopts);
po::store(parse_command_line(argc, argv, opts), *conf);
cerr << "dtrain" << endl << endl;
if ((*conf)["help"].as<bool>()) {
cerr << opts << endl;
return false;
}
if (conf->count("conf")) {
ifstream f((*conf)["conf"].as<string>().c_str());
po::store(po::parse_config_file(f, opts), *conf);
}
po::notify(*conf);
if (!conf->count("decoder_conf")) {
cerr << "Missing decoder configuration." << endl;
cerr << opts << endl;
return false;
}
if (!conf->count("bitext")) {
cerr << "No input given." << endl;
cerr << opts << endl;
return false;
}
if ((*conf)["output_data"].as<string>() != "") {
if ((*conf)["output_data"].as<string>() != "kbest" &&
(*conf)["output_data"].as<string>() != "default" &&
(*conf)["output_data"].as<string>() != "all") {
cerr << "Wrong 'output_data' argument: ";
cerr << (*conf)["output_data"].as<string>() << endl;
return false;
}
}
return true;
}
} // namespace
#endif
|