1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
|
#include "dtrain.h"
#include "sample.h"
#include "score.h"
#include "update.h"
using namespace dtrain;
int
main(int argc, char** argv)
{
// get configuration
po::variables_map conf;
if (!dtrain_init(argc, argv, &conf))
return 1;
const size_t k = conf["k"].as<size_t>();
const bool unique_kbest = conf["unique_kbest"].as<bool>();
const bool forest_sample = conf["forest_sample"].as<bool>();
const string score_name = conf["score"].as<string>();
const weight_t nakov_fix = conf["nakov_fix"].as<weight_t>();
const weight_t chiang_decay = conf["chiang_decay"].as<weight_t>();
const size_t N = conf["N"].as<size_t>();
const size_t T = conf["iterations"].as<size_t>();
const weight_t eta = conf["learning_rate"].as<weight_t>();
const weight_t margin = conf["margin"].as<weight_t>();
const weight_t cut = conf["cut"].as<weight_t>();
const bool adjust_cut = conf["adjust"].as<bool>();
const bool all_pairs = cut==0;
const bool average = conf["average"].as<bool>();
const bool pro = conf["pro_sampling"].as<bool>();
const bool structured = conf["structured"].as<bool>();
const weight_t threshold = conf["threshold"].as<weight_t>();
const size_t max_up = conf["max_pairs"].as<size_t>();
const weight_t l1_reg = conf["l1_reg"].as<weight_t>();
const bool keep = conf["keep"].as<bool>();
const bool noup = conf["disable_learning"].as<bool>();
const string output_fn = conf["output"].as<string>();
vector<string> print_weights;
boost::split(print_weights, conf["print_weights"].as<string>(),
boost::is_any_of(" "));
const string output_updates_fn = conf["output_updates"].as<string>();
const bool output_updates = output_updates_fn!="";
const string output_raw_fn = conf["output_raw"].as<string>();
const bool output_raw = output_raw_fn!="";
// setup decoder
register_feature_functions();
SetSilent(true);
ReadFile f(conf["decoder_conf"].as<string>());
Decoder decoder(f.stream());
// setup scorer & observer
Scorer* scorer;
if (score_name == "nakov") {
scorer = static_cast<NakovBleuScorer*>(new NakovBleuScorer(N, nakov_fix));
} else if (score_name == "papineni") {
scorer = static_cast<PapineniBleuScorer*>(new PapineniBleuScorer(N));
} else if (score_name == "lin") {
scorer = static_cast<LinBleuScorer*>(new LinBleuScorer(N));
} else if (score_name == "liang") {
scorer = static_cast<LiangBleuScorer*>(new LiangBleuScorer(N));
} else if (score_name == "chiang") {
scorer = static_cast<ChiangBleuScorer*>(new ChiangBleuScorer(N));
} else if (score_name == "sum") {
scorer = static_cast<SumBleuScorer*>(new SumBleuScorer(N));
} else {
assert(false);
}
HypSampler* observer;
if (forest_sample)
observer = new KSampler(k, scorer);
else if (unique_kbest)
observer = new KBestSampler(k, scorer);
else
observer = new KBestNoFilterSampler(k, scorer);
// weights
vector<weight_t>& decoder_weights = decoder.CurrentWeightVector();
SparseVector<weight_t> lambdas, w_average;
if (conf.count("input_weights")) {
Weights::InitFromFile(conf["input_weights"].as<string>(), &decoder_weights);
Weights::InitSparseVector(decoder_weights, &lambdas);
}
// input
string input_fn = conf["bitext"].as<string>();
ReadFile input(input_fn);
vector<string> buf; // decoder only accepts strings as input
vector<vector<Ngrams> > buffered_ngrams; // compute ngrams and lengths of references
vector<vector<size_t> > buffered_lengths; // (just once)
size_t input_sz = 0;
cerr << setprecision(4);
// output configuration
cerr << "Parameters:" << endl;
cerr << setw(25) << "bitext " << "'" << input_fn << "'" << endl;
cerr << setw(25) << "k " << k << endl;
if (unique_kbest && !forest_sample)
cerr << setw(25) << "unique k-best " << unique_kbest << endl;
if (forest_sample)
cerr << setw(25) << "forest " << forest_sample << endl;
if (all_pairs)
cerr << setw(25) << "all pairs " << all_pairs << endl;
else if (pro)
cerr << setw(25) << "PRO " << pro << endl;
cerr << setw(25) << "score " << "'" << score_name << "'" << endl;
if (score_name == "nakov")
cerr << setw(25) << "nakov fix " << nakov_fix << endl;
if (score_name == "chiang")
cerr << setw(25) << "chiang decay " << chiang_decay << endl;
cerr << setw(25) << "N " << N << endl;
cerr << setw(25) << "T " << T << endl;
cerr << setw(25) << "learning rate " << eta << endl;
cerr << setw(25) << "margin " << margin << endl;
if (!structured) {
cerr << setw(25) << "cut " << round(cut*100) << "%" << endl;
cerr << setw(25) << "adjust " << adjust_cut << endl;
} else {
cerr << setw(25) << "struct. obj " << structured << endl;
}
if (threshold > 0)
cerr << setw(25) << "threshold " << threshold << endl;
if (max_up != numeric_limits<size_t>::max())
cerr << setw(25) << "max up. " << max_up << endl;
if (noup)
cerr << setw(25) << "no up. " << noup << endl;
cerr << setw(25) << "average " << average << endl;
cerr << setw(25) << "l1 reg. " << l1_reg << endl;
cerr << setw(25) << "decoder conf " << "'"
<< conf["decoder_conf"].as<string>() << "'" << endl;
cerr << setw(25) << "input " << "'" << input_fn << "'" << endl;
cerr << setw(25) << "output " << "'" << output_fn << "'" << endl;
if (conf.count("input_weights")) {
cerr << setw(25) << "weights in " << "'"
<< conf["input_weights"].as<string>() << "'" << endl;
}
if (noup)
cerr << setw(25) << "no updates!" << endl;
cerr << "(1 dot per processed input)" << endl;
// meta
weight_t best=0., gold_prev=0.;
size_t best_iteration = 0;
time_t total_time = 0.;
// output
WriteFile out_up, out_raw;
if (output_raw) {
out_raw.Init(output_raw_fn);
*out_raw << setprecision(numeric_limits<double>::digits10+1);
}
if (output_updates) {
out_up.Init(output_updates_fn);
*out_up << setprecision(numeric_limits<double>::digits10+1);
}
for (size_t t = 0; t < T; t++) // T iterations
{
time_t start, end;
time(&start);
weight_t gold_sum=0., model_sum=0.;
size_t i=0, num_up=0, feature_count=0, list_sz=0;
cerr << "Iteration #" << t+1 << " of " << T << "." << endl;
while(true)
{
bool next = true;
// getting input
if (t == 0) {
string in;
if(!getline(*input, in)) {
next = false;
} else {
vector<string> parts;
boost::algorithm::split_regex(parts, in, boost::regex(" \\|\\|\\| "));
buf.push_back(parts[0]);
parts.erase(parts.begin());
buffered_ngrams.push_back({});
buffered_lengths.push_back({});
for (auto s: parts) {
vector<WordID> r;
vector<string> toks;
boost::split(toks, s, boost::is_any_of(" "));
for (auto tok: toks)
r.push_back(TD::Convert(tok));
buffered_ngrams.back().emplace_back(ngrams(r, N));
buffered_lengths.back().push_back(r.size());
}
}
} else {
next = i<input_sz;
}
// produce some pretty output
if (next) {
if (i%20 == 0)
cerr << " ";
cerr << ".";
if ((i+1)%20==0)
cerr << " " << i+1 << endl;
} else {
if (i%20 != 0)
cerr << " " << i << endl;
}
cerr.flush();
// stop iterating
if (!next) break;
// decode
if (t > 0 || i > 0)
lambdas.init_vector(&decoder_weights);
observer->reference_ngrams = &buffered_ngrams[i];
observer->reference_lengths = &buffered_lengths[i];
decoder.Decode(buf[i], observer);
vector<Hyp>* sample = &(observer->sample);
// stats for 1-best
gold_sum += sample->front().gold;
model_sum += sample->front().model;
feature_count += observer->feature_count;
list_sz += observer->effective_size;
if (output_raw)
output_sample(sample, *out_raw, i);
// update model
if (!noup) {
SparseVector<weight_t> updates;
if (structured)
num_up += update_structured(sample, updates, margin,
output_updates, *out_up, i);
else if (all_pairs)
num_up += updates_all(sample, updates, max_up, threshold,
output_updates, *out_up, i);
else if (pro)
num_up += updates_pro(sample, updates, cut, max_up, threshold,
output_updates, *out_up, i);
else
num_up += updates_multipartite(sample, updates, cut, margin,
max_up, threshold, adjust_cut,
output_updates, *out_up, i);
SparseVector<weight_t> lambdas_copy;
if (l1_reg)
lambdas_copy = lambdas;
lambdas.plus_eq_v_times_s(updates, eta);
// update context for Chiang's approx. BLEU
if (score_name == "chiang") {
for (auto it: *sample) {
if (it.rank == 0) {
scorer->update_context(it.w, buffered_ngrams[i],
buffered_lengths[i], chiang_decay);
break;
}
}
}
// \ell_1 regularization
// NB: regularization is done after each sentence,
// not after every single pair!
if (l1_reg) {
SparseVector<weight_t>::iterator it = lambdas.begin();
for (; it != lambdas.end(); ++it) {
weight_t v = it->second;
if (!v)
continue;
if (!lambdas_copy.get(it->first) // new or..
|| lambdas_copy.get(it->first)!=v) // updated feature
{
if (v > 0) {
it->second = max(0., v - l1_reg);
} else {
it->second = min(0., v + l1_reg);
}
}
}
}
} // noup
i++;
} // input loop
if (t == 0)
input_sz = i; // remember size of input (# lines)
// update average
if (average)
w_average += lambdas;
// stats
weight_t gold_avg = gold_sum/(weight_t)input_sz;
cerr << setiosflags(ios::showpos) << "WEIGHTS" << endl;
for (auto name: print_weights)
cerr << setw(18) << name << " = "
<< lambdas.get(FD::Convert(name)) << endl;
cerr << " ---" << endl;
cerr << resetiosflags(ios::showpos)
<< " 1best avg score: " << gold_avg*100;
cerr << setiosflags(ios::showpos) << " ("
<< (gold_avg-gold_prev)*100 << ")" << endl;
cerr << " 1best avg model score: "
<< model_sum/(weight_t)input_sz << endl;
cerr << " avg # updates: ";
cerr << resetiosflags(ios::showpos) << num_up/(float)input_sz << endl;
cerr << " non-0 feature count: " << lambdas.num_nonzero() << endl;
cerr << " avg f count: " << feature_count/(float)list_sz << endl;
cerr << " avg list sz: " << list_sz/(float)input_sz << endl;
if (gold_avg > best) {
best = gold_avg;
best_iteration = t;
}
gold_prev = gold_avg;
time (&end);
time_t time_diff = difftime(end, start);
total_time += time_diff;
cerr << "(time " << time_diff/60. << " min, ";
cerr << time_diff/input_sz << " s/S)" << endl;
if (t+1 != T) cerr << endl;
if (keep) { // keep intermediate weights
lambdas.init_vector(&decoder_weights);
string w_fn = "weights." + boost::lexical_cast<string>(t) + ".gz";
Weights::WriteToFile(w_fn, decoder_weights, true);
}
} // outer loop
// final weights
if (average) {
w_average /= T;
w_average.init_vector(decoder_weights);
} else if (!keep) {
lambdas.init_vector(decoder_weights);
}
if (average || !keep)
Weights::WriteToFile(output_fn, decoder_weights, true);
cerr << endl << "---" << endl << "Best iteration: ";
cerr << best_iteration+1 << " [GOLD = " << best*100 << "]." << endl;
cerr << "This took " << total_time/60. << " min." << endl;
return 0;
}
|