1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
|
#include "ff_wordalign.h"
#include <string>
#include <cmath>
#include "stringlib.h"
#include "sentence_metadata.h"
#include "hg.h"
#include "fdict.h"
#include "aligner.h"
#include "tdict.h" // Blunsom hack
#include "filelib.h" // Blunsom hack
using namespace std;
RelativeSentencePosition::RelativeSentencePosition(const string& param) :
fid_(FD::Convert("RelativeSentencePosition")) {}
void RelativeSentencePosition::TraversalFeaturesImpl(const SentenceMetadata& smeta,
const Hypergraph::Edge& edge,
const vector<const void*>& ant_states,
SparseVector<double>* features,
SparseVector<double>* estimated_features,
void* state) const {
// if the source word is either null or the generated word
// has no position in the reference
if (edge.i_ == -1 || edge.prev_i_ == -1)
return;
assert(smeta.GetTargetLength() > 0);
const double val = fabs(static_cast<double>(edge.i_) / smeta.GetSourceLength() -
static_cast<double>(edge.prev_i_) / smeta.GetTargetLength());
features->set_value(fid_, val);
// cerr << f_len_ << " " << e_len_ << " [" << edge.i_ << "," << edge.j_ << "|" << edge.prev_i_ << "," << edge.prev_j_ << "]\t" << edge.rule_->AsString() << "\tVAL=" << val << endl;
}
MarkovJump::MarkovJump(const string& param) :
FeatureFunction(1),
fid_(FD::Convert("MarkovJump")),
individual_params_per_jumpsize_(false),
condition_on_flen_(false) {
cerr << " MarkovJump: Blunsom&Cohn feature";
vector<string> argv;
int argc = SplitOnWhitespace(param, &argv);
if (argc > 0) {
if (argc != 1 || !(argv[0] == "-f" || argv[0] == "-i" || argv[0] == "-if")) {
cerr << "MarkovJump: expected parameters to be -f, -i, or -if\n";
exit(1);
}
individual_params_per_jumpsize_ = (argv[0][1] == 'i');
condition_on_flen_ = (argv[0][argv[0].size() - 1] == 'f');
if (individual_params_per_jumpsize_) {
template_ = "Jump:000";
cerr << ", individual jump parameters";
if (condition_on_flen_) {
template_ += ":F00";
cerr << " (split by f-length)";
}
}
}
cerr << endl;
}
void MarkovJump::TraversalFeaturesImpl(const SentenceMetadata& smeta,
const Hypergraph::Edge& edge,
const vector<const void*>& ant_states,
SparseVector<double>* features,
SparseVector<double>* estimated_features,
void* state) const {
unsigned char& dpstate = *((unsigned char*)state);
if (edge.Arity() == 0) {
dpstate = static_cast<unsigned int>(edge.i_);
} else if (edge.Arity() == 1) {
dpstate = *((unsigned char*)ant_states[0]);
} else if (edge.Arity() == 2) {
int left_index = *((unsigned char*)ant_states[0]);
int right_index = *((unsigned char*)ant_states[1]);
if (right_index == -1)
dpstate = static_cast<unsigned int>(left_index);
else
dpstate = static_cast<unsigned int>(right_index);
const int jumpsize = right_index - left_index;
features->set_value(fid_, fabs(jumpsize - 1)); // Blunsom and Cohn def
if (individual_params_per_jumpsize_) {
string fname = template_;
int param = jumpsize;
if (jumpsize < 0) {
param *= -1;
fname[5]='L';
} else if (jumpsize > 0) {
fname[5]='R';
}
if (param) {
fname[6] = '0' + (param / 10);
fname[7] = '0' + (param % 10);
}
if (condition_on_flen_) {
const int flen = smeta.GetSourceLength();
fname[10] = '0' + (flen / 10);
fname[11] = '0' + (flen % 10);
}
features->set_value(FD::Convert(fname), 1.0);
}
} else {
assert(!"something really unexpected is happening");
}
}
AlignerResults::AlignerResults(const std::string& param) :
cur_sent_(-1),
cur_grid_(NULL) {
vector<string> argv;
int argc = SplitOnWhitespace(param, &argv);
if (argc != 2) {
cerr << "Required format: AlignerResults [FeatureName] [file.pharaoh]\n";
exit(1);
}
cerr << " feature: " << argv[0] << "\talignments: " << argv[1] << endl;
fid_ = FD::Convert(argv[0]);
ReadFile rf(argv[1]);
istream& in = *rf.stream(); int lc = 0;
while(in) {
string line;
getline(in, line);
if (!in) break;
++lc;
is_aligned_.push_back(AlignerTools::ReadPharaohAlignmentGrid(line));
}
cerr << " Loaded " << lc << " refs\n";
}
void AlignerResults::TraversalFeaturesImpl(const SentenceMetadata& smeta,
const Hypergraph::Edge& edge,
const vector<const void*>& ant_states,
SparseVector<double>* features,
SparseVector<double>* estimated_features,
void* state) const {
if (edge.i_ == -1 || edge.prev_i_ == -1)
return;
if (cur_sent_ != smeta.GetSentenceID()) {
assert(smeta.HasReference());
cur_sent_ = smeta.GetSentenceID();
assert(cur_sent_ < is_aligned_.size());
cur_grid_ = is_aligned_[cur_sent_].get();
}
//cerr << edge.rule_->AsString() << endl;
int j = edge.i_; // source side (f)
int i = edge.prev_i_; // target side (e)
if (j < cur_grid_->height() && i < cur_grid_->width() && (*cur_grid_)(i, j)) {
// if (edge.rule_->e_[0] == smeta.GetReference()[i][0].label) {
features->set_value(fid_, 1.0);
// cerr << edge.rule_->AsString() << " (" << i << "," << j << ")\n";
// }
}
}
BlunsomSynchronousParseHack::BlunsomSynchronousParseHack(const string& param) :
FeatureFunction((100 / 8) + 1), fid_(FD::Convert("NotRef")), cur_sent_(-1) {
ReadFile rf(param);
istream& in = *rf.stream(); int lc = 0;
while(in) {
string line;
getline(in, line);
if (!in) break;
++lc;
refs_.push_back(vector<WordID>());
TD::ConvertSentence(line, &refs_.back());
}
cerr << " Loaded " << lc << " refs\n";
}
void BlunsomSynchronousParseHack::TraversalFeaturesImpl(const SentenceMetadata& smeta,
const Hypergraph::Edge& edge,
const vector<const void*>& ant_states,
SparseVector<double>* features,
SparseVector<double>* estimated_features,
void* state) const {
if (cur_sent_ != smeta.GetSentenceID()) {
// assert(smeta.HasReference());
cur_sent_ = smeta.GetSentenceID();
assert(cur_sent_ < refs_.size());
cur_ref_ = &refs_[cur_sent_];
cur_map_.clear();
for (int i = 0; i < cur_ref_->size(); ++i) {
vector<WordID> phrase;
for (int j = i; j < cur_ref_->size(); ++j) {
phrase.push_back((*cur_ref_)[j]);
cur_map_[phrase] = i;
}
}
}
//cerr << edge.rule_->AsString() << endl;
for (int i = 0; i < ant_states.size(); ++i) {
if (DoesNotBelong(ant_states[i])) {
//cerr << " ant " << i << " does not belong\n";
return;
}
}
vector<vector<WordID> > ants(ant_states.size());
vector<const vector<WordID>* > pants(ant_states.size());
for (int i = 0; i < ant_states.size(); ++i) {
AppendAntecedentString(ant_states[i], &ants[i]);
//cerr << " ant[" << i << "]: " << ((int)*(static_cast<const unsigned char*>(ant_states[i]))) << " " << TD::GetString(ants[i]) << endl;
pants[i] = &ants[i];
}
vector<WordID> yield;
edge.rule_->ESubstitute(pants, &yield);
//cerr << "YIELD: " << TD::GetString(yield) << endl;
Vec2Int::iterator it = cur_map_.find(yield);
if (it == cur_map_.end()) {
features->set_value(fid_, 1);
//cerr << " BAD!\n";
return;
}
SetStateMask(it->second, it->second + yield.size(), state);
}
|