1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
|
#include "apply_models.h"
#include <vector>
#include <algorithm>
#include <tr1/unordered_map>
#include <tr1/unordered_set>
#include <boost/functional/hash.hpp>
#include "hg.h"
#include "ff.h"
using namespace std;
using namespace std::tr1;
struct Candidate;
typedef SmallVector JVector;
typedef vector<Candidate*> CandidateHeap;
typedef vector<Candidate*> CandidateList;
// life cycle: candidates are created, placed on the heap
// and retrieved by their estimated cost, when they're
// retrieved, they're incorporated into the +LM hypergraph
// where they also know the head node index they are
// attached to. After they are added to the +LM hypergraph
// vit_prob_ and est_prob_ fields may be updated as better
// derivations are found (this happens since the successor's
// of derivation d may have a better score- they are
// explored lazily). However, the updates don't happen
// when a candidate is in the heap so maintaining the heap
// property is not an issue.
struct Candidate {
int node_index_; // -1 until incorporated
// into the +LM forest
const Hypergraph::Edge* in_edge_; // in -LM forest
Hypergraph::Edge out_edge_;
string state_;
const JVector j_;
prob_t vit_prob_; // these are fixed until the cand
// is popped, then they may be updated
prob_t est_prob_;
Candidate(const Hypergraph::Edge& e,
const JVector& j,
const Hypergraph& out_hg,
const vector<CandidateList>& D,
const SentenceMetadata& smeta,
const ModelSet& models,
bool is_goal) :
node_index_(-1),
in_edge_(&e),
j_(j) {
InitializeCandidate(out_hg, smeta, D, models, is_goal);
}
// used to query uniqueness
Candidate(const Hypergraph::Edge& e,
const JVector& j) : in_edge_(&e), j_(j) {}
bool IsIncorporatedIntoHypergraph() const {
return node_index_ >= 0;
}
void InitializeCandidate(const Hypergraph& out_hg,
const SentenceMetadata& smeta,
const vector<vector<Candidate*> >& D,
const ModelSet& models,
const bool is_goal) {
const Hypergraph::Edge& in_edge = *in_edge_;
out_edge_.rule_ = in_edge.rule_;
out_edge_.feature_values_ = in_edge.feature_values_;
out_edge_.i_ = in_edge.i_;
out_edge_.j_ = in_edge.j_;
out_edge_.prev_i_ = in_edge.prev_i_;
out_edge_.prev_j_ = in_edge.prev_j_;
Hypergraph::TailNodeVector& tail = out_edge_.tail_nodes_;
tail.resize(j_.size());
prob_t p = prob_t::One();
// cerr << "\nEstimating application of " << in_edge.rule_->AsString() << endl;
for (int i = 0; i < tail.size(); ++i) {
const Candidate& ant = *D[in_edge.tail_nodes_[i]][j_[i]];
assert(ant.IsIncorporatedIntoHypergraph());
tail[i] = ant.node_index_;
p *= ant.vit_prob_;
}
prob_t edge_estimate = prob_t::One();
if (is_goal) {
assert(tail.size() == 1);
const string& ant_state = out_hg.nodes_[tail.front()].state_;
models.AddFinalFeatures(ant_state, &out_edge_);
} else {
models.AddFeaturesToEdge(smeta, out_hg, &out_edge_, &state_, &edge_estimate);
}
vit_prob_ = out_edge_.edge_prob_ * p;
est_prob_ = vit_prob_ * edge_estimate;
}
};
ostream& operator<<(ostream& os, const Candidate& cand) {
os << "CAND[";
if (!cand.IsIncorporatedIntoHypergraph()) { os << "PENDING "; }
else { os << "+LM_node=" << cand.node_index_; }
os << " edge=" << cand.in_edge_->id_;
os << " j=<";
for (int i = 0; i < cand.j_.size(); ++i)
os << (i==0 ? "" : " ") << cand.j_[i];
os << "> vit=" << log(cand.vit_prob_);
os << " est=" << log(cand.est_prob_);
return os << ']';
}
struct HeapCandCompare {
bool operator()(const Candidate* l, const Candidate* r) const {
return l->est_prob_ < r->est_prob_;
}
};
struct EstProbSorter {
bool operator()(const Candidate* l, const Candidate* r) const {
return l->est_prob_ > r->est_prob_;
}
};
// the same candidate <edge, j> can be added multiple times if
// j is multidimensional (if you're going NW in Manhattan, you
// can first go north, then west, or you can go west then north)
// this is a hash function on the relevant variables from
// Candidate to enforce this.
struct CandidateUniquenessHash {
size_t operator()(const Candidate* c) const {
size_t x = 5381;
x = ((x << 5) + x) ^ c->in_edge_->id_;
for (int i = 0; i < c->j_.size(); ++i)
x = ((x << 5) + x) ^ c->j_[i];
return x;
}
};
struct CandidateUniquenessEquals {
bool operator()(const Candidate* a, const Candidate* b) const {
return (a->in_edge_ == b->in_edge_) && (a->j_ == b->j_);
}
};
typedef unordered_set<const Candidate*, CandidateUniquenessHash, CandidateUniquenessEquals> UniqueCandidateSet;
typedef unordered_map<string, Candidate*, boost::hash<string> > State2Node;
class CubePruningRescorer {
public:
CubePruningRescorer(const ModelSet& m,
const SentenceMetadata& sm,
const Hypergraph& i,
int pop_limit,
Hypergraph* o) :
models(m),
smeta(sm),
in(i),
out(*o),
D(in.nodes_.size()),
pop_limit_(pop_limit) {
cerr << " Applying feature functions (cube pruning, pop_limit = " << pop_limit_ << ')' << endl;
}
void Apply() {
int num_nodes = in.nodes_.size();
int goal_id = num_nodes - 1;
int pregoal = goal_id - 1;
int every = 1;
if (num_nodes > 100) every = 10;
assert(in.nodes_[pregoal].out_edges_.size() == 1);
cerr << " ";
for (int i = 0; i < in.nodes_.size(); ++i) {
if (i % every == 0) cerr << '.';
KBest(i, i == goal_id);
}
cerr << endl;
cerr << " Best path: " << log(D[goal_id].front()->vit_prob_)
<< "\t" << log(D[goal_id].front()->est_prob_) << endl;
out.PruneUnreachable(D[goal_id].front()->node_index_);
FreeAll();
}
private:
void FreeAll() {
for (int i = 0; i < D.size(); ++i) {
CandidateList& D_i = D[i];
for (int j = 0; j < D_i.size(); ++j)
delete D_i[j];
}
D.clear();
}
void IncorporateIntoPlusLMForest(Candidate* item, State2Node* s2n, CandidateList* freelist) {
Hypergraph::Edge* new_edge = out.AddEdge(item->out_edge_.rule_, item->out_edge_.tail_nodes_);
new_edge->feature_values_ = item->out_edge_.feature_values_;
new_edge->edge_prob_ = item->out_edge_.edge_prob_;
new_edge->i_ = item->out_edge_.i_;
new_edge->j_ = item->out_edge_.j_;
new_edge->prev_i_ = item->out_edge_.prev_i_;
new_edge->prev_j_ = item->out_edge_.prev_j_;
Candidate*& o_item = (*s2n)[item->state_];
if (!o_item) o_item = item;
int& node_id = o_item->node_index_;
if (node_id < 0) {
Hypergraph::Node* new_node = out.AddNode(in.nodes_[item->in_edge_->head_node_].cat_, item->state_);
node_id = new_node->id_;
}
Hypergraph::Node* node = &out.nodes_[node_id];
out.ConnectEdgeToHeadNode(new_edge, node);
// update candidate if we have a better derivation
// note: the difference between the vit score and the estimated
// score is the same for all items with a common residual DP
// state
if (item->vit_prob_ > o_item->vit_prob_) {
assert(o_item->state_ == item->state_); // sanity check!
o_item->est_prob_ = item->est_prob_;
o_item->vit_prob_ = item->vit_prob_;
}
if (item != o_item) freelist->push_back(item);
}
void KBest(const int vert_index, const bool is_goal) {
// cerr << "KBest(" << vert_index << ")\n";
CandidateList& D_v = D[vert_index];
assert(D_v.empty());
const Hypergraph::Node& v = in.nodes_[vert_index];
// cerr << " has " << v.in_edges_.size() << " in-coming edges\n";
const vector<int>& in_edges = v.in_edges_;
CandidateHeap cand;
CandidateList freelist;
cand.reserve(in_edges.size());
UniqueCandidateSet unique_cands;
for (int i = 0; i < in_edges.size(); ++i) {
const Hypergraph::Edge& edge = in.edges_[in_edges[i]];
const JVector j(edge.tail_nodes_.size(), 0);
cand.push_back(new Candidate(edge, j, out, D, smeta, models, is_goal));
assert(unique_cands.insert(cand.back()).second); // these should all be unique!
}
// cerr << " making heap of " << cand.size() << " candidates\n";
make_heap(cand.begin(), cand.end(), HeapCandCompare());
State2Node state2node; // "buf" in Figure 2
int pops = 0;
while(!cand.empty() && pops < pop_limit_) {
pop_heap(cand.begin(), cand.end(), HeapCandCompare());
Candidate* item = cand.back();
cand.pop_back();
// cerr << "POPPED: " << *item << endl;
PushSucc(*item, is_goal, &cand, &unique_cands);
IncorporateIntoPlusLMForest(item, &state2node, &freelist);
++pops;
}
D_v.resize(state2node.size());
int c = 0;
for (State2Node::iterator i = state2node.begin(); i != state2node.end(); ++i)
D_v[c++] = i->second;
sort(D_v.begin(), D_v.end(), EstProbSorter());
// cerr << " expanded to " << D_v.size() << " nodes\n";
for (int i = 0; i < cand.size(); ++i)
delete cand[i];
// freelist is necessary since even after an item merged, it still stays in
// the unique set so it can't be deleted til now
for (int i = 0; i < freelist.size(); ++i)
delete freelist[i];
}
void PushSucc(const Candidate& item, const bool is_goal, CandidateHeap* pcand, UniqueCandidateSet* cs) {
CandidateHeap& cand = *pcand;
for (int i = 0; i < item.j_.size(); ++i) {
JVector j = item.j_;
++j[i];
if (j[i] < D[item.in_edge_->tail_nodes_[i]].size()) {
Candidate query_unique(*item.in_edge_, j);
if (cs->count(&query_unique) == 0) {
Candidate* new_cand = new Candidate(*item.in_edge_, j, out, D, smeta, models, is_goal);
cand.push_back(new_cand);
push_heap(cand.begin(), cand.end(), HeapCandCompare());
assert(cs->insert(new_cand).second); // insert into uniqueness set, sanity check
}
}
}
}
const ModelSet& models;
const SentenceMetadata& smeta;
const Hypergraph& in;
Hypergraph& out;
vector<CandidateList> D; // maps nodes in in-HG to the
// equivalent nodes (many due to state
// splits) in the out-HG.
const int pop_limit_;
};
struct NoPruningRescorer {
NoPruningRescorer(const ModelSet& m, const Hypergraph& i, Hypergraph* o) :
models(m),
in(i),
out(*o) {
cerr << " Rescoring forest (full intersection)\n";
}
void RescoreNode(const int node_num, const bool is_goal) {
}
void Apply() {
int num_nodes = in.nodes_.size();
int goal_id = num_nodes - 1;
int pregoal = goal_id - 1;
int every = 1;
if (num_nodes > 100) every = 10;
assert(in.nodes_[pregoal].out_edges_.size() == 1);
cerr << " ";
for (int i = 0; i < in.nodes_.size(); ++i) {
if (i % every == 0) cerr << '.';
RescoreNode(i, i == goal_id);
}
cerr << endl;
}
private:
const ModelSet& models;
const Hypergraph& in;
Hypergraph& out;
};
// each node in the graph has one of these, it keeps track of
void ApplyModelSet(const Hypergraph& in,
const SentenceMetadata& smeta,
const ModelSet& models,
const PruningConfiguration& config,
Hypergraph* out) {
int pl = config.pop_limit;
if (pl > 100 && in.nodes_.size() > 80000) {
cerr << " Note: reducing pop_limit to " << pl << " for very large forest\n";
pl = 30;
}
CubePruningRescorer ma(models, smeta, in, pl, out);
ma.Apply();
}
|