summaryrefslogtreecommitdiff
path: root/rst_parser/rst_train.cc
blob: 9b730f3d03286b7908b9010d168f0a661a8c3d1a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
#include "arc_factored.h"

#include <vector>
#include <iostream>
#include <boost/program_options.hpp>
#include <boost/program_options/variables_map.hpp>

#include "timing_stats.h"
#include "arc_ff.h"
#include "dep_training.h"
#include "stringlib.h"
#include "filelib.h"
#include "tdict.h"
#include "weights.h"
#include "rst.h"
#include "global_ff.h"

using namespace std;
namespace po = boost::program_options;

void InitCommandLine(int argc, char** argv, po::variables_map* conf) {
  po::options_description opts("Configuration options");
  string cfg_file;
  opts.add_options()
        ("training_data,t",po::value<string>()->default_value("-"), "File containing training data (jsent format)")
        ("q_weights,q",po::value<string>(), "Arc-factored weights for proposal distribution")
        ("samples,n",po::value<unsigned>()->default_value(1000), "Number of samples");
  po::options_description clo("Command line options");
  clo.add_options()
        ("config,c", po::value<string>(&cfg_file), "Configuration file")
        ("help,?", "Print this help message and exit");

  po::options_description dconfig_options, dcmdline_options;
  dconfig_options.add(opts);
  dcmdline_options.add(dconfig_options).add(clo);
  po::store(parse_command_line(argc, argv, dcmdline_options), *conf);
  if (cfg_file.size() > 0) {
    ReadFile rf(cfg_file);
    po::store(po::parse_config_file(*rf.stream(), dconfig_options), *conf);
  }
  if (conf->count("help")) {
    cerr << dcmdline_options << endl;
    exit(1);
  }
}

int main(int argc, char** argv) {
  po::variables_map conf;
  InitCommandLine(argc, argv, &conf);
  vector<weight_t> qweights(FD::NumFeats(), 0.0);
  Weights::InitFromFile(conf["q_weights"].as<string>(), &qweights);
  vector<TrainingInstance> corpus;
  ArcFeatureFunctions ffs;
  GlobalFeatureFunctions gff;
  TrainingInstance::ReadTrainingCorpus(conf["training_data"].as<string>(), &corpus);
  vector<ArcFactoredForest> forests(corpus.size());
  vector<prob_t> zs(corpus.size());
  SparseVector<double> empirical;
  bool flag = false;
  for (int i = 0; i < corpus.size(); ++i) {
    TrainingInstance& cur = corpus[i];
    if ((i+1) % 10 == 0) { cerr << '.' << flush; flag = true; }
    if ((i+1) % 400 == 0) { cerr << " [" << (i+1) << "]\n"; flag = false; }
    SparseVector<weight_t> efmap;
    ffs.PrepareForInput(cur.ts);
    gff.PrepareForInput(cur.ts);
    for (int j = 0; j < cur.tree.h_m_pairs.size(); ++j) {
      efmap.clear();
      ffs.EdgeFeatures(cur.ts, cur.tree.h_m_pairs[j].first,
                       cur.tree.h_m_pairs[j].second,
                       &efmap);
      cur.features += efmap;
    }
    for (int j = 0; j < cur.tree.roots.size(); ++j) {
      efmap.clear();
      ffs.EdgeFeatures(cur.ts, -1, cur.tree.roots[j], &efmap);
      cur.features += efmap;
    }
    efmap.clear();
    gff.Features(cur.ts, cur.tree, &efmap);
    cur.features += efmap;
    empirical += cur.features;
    forests[i].resize(cur.ts.words.size());
    forests[i].ExtractFeatures(cur.ts, ffs);
    forests[i].Reweight(qweights);
    forests[i].EdgeMarginals(&zs[i]);
    zs[i] = prob_t::One() / zs[i];
    // cerr << zs[i] << endl;
    forests[i].Reweight(qweights);    // EdgeMarginals overwrites edge_prob
  }
  if (flag) cerr << endl;
  MT19937 rng;
  SparseVector<double> model_exp;
  SparseVector<double> weights;
  Weights::InitSparseVector(qweights, &weights);
  int samples = conf["samples"].as<unsigned>();
  for (int i = 0; i < corpus.size(); ++i) {
#if 0
    forests[i].EdgeMarginals();
    model_exp.clear();
    for (int h = -1; h < num_words; ++h) {
      for (int m = 0; m < num_words; ++m) {
        if (h == m) continue;
        const ArcFactoredForest::Edge& edge = forests[i](h,m);
        const SparseVector<weight_t>& fmap = edge.features;
        double prob = edge.edge_prob.as_float();
        model_exp += fmap * prob;
      }
    }
    cerr << "TRUE EXP: " << model_exp << endl;
    forests[i].Reweight(weights);
#endif

    TreeSampler ts(forests[i]);
    prob_t zhat = prob_t::Zero();
    SparseVector<prob_t> sampled_exp;
    for (int n = 0; n < samples; ++n) {
      EdgeSubset tree;
      ts.SampleRandomSpanningTree(&tree, &rng);
      SparseVector<double> qfeats, gfeats;
      tree.ExtractFeatures(corpus[i].ts, ffs, &qfeats);
      prob_t u; u.logeq(qfeats.dot(qweights));
      const prob_t q = u / zs[i];  // proposal mass
      gff.Features(corpus[i].ts, tree, &gfeats);
      SparseVector<double> tot_feats = qfeats + gfeats;
      u.logeq(tot_feats.dot(weights));
      prob_t w = u / q;
      zhat += w;
      for (SparseVector<double>::const_iterator it = tot_feats.begin(); it != tot_feats.end(); ++it)
        sampled_exp.add_value(it->first, w * prob_t(it->second));
    }
    sampled_exp /= zhat;
    SparseVector<double> tot_m;
    for (SparseVector<prob_t>::const_iterator it = sampled_exp.begin(); it != sampled_exp.end(); ++it)
      tot_m.add_value(it->first, it->second.as_float());
    //cerr << "DIFF: " << (tot_m - corpus[i].features) << endl;
    const double eta = 0.03;
    weights -= (tot_m - corpus[i].features) * eta;
  }
  cerr << "WEIGHTS.\n";
  cerr << weights << endl;
  return 0;
}