1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
|
#include "arc_factored.h"
#include <vector>
#include <iostream>
#include <boost/program_options.hpp>
#include <boost/program_options/variables_map.hpp>
#include "arc_ff.h"
#include "stringlib.h"
#include "filelib.h"
#include "tdict.h"
#include "dep_training.h"
#include "optimize.h"
#include "weights.h"
using namespace std;
namespace po = boost::program_options;
void InitCommandLine(int argc, char** argv, po::variables_map* conf) {
po::options_description opts("Configuration options");
string cfg_file;
opts.add_options()
("training_data,t",po::value<string>()->default_value("-"), "File containing training data (jsent format)")
("weights,w",po::value<string>(), "Optional starting weights")
("output_every_i_iterations,I",po::value<unsigned>()->default_value(1), "Write weights every I iterations")
("regularization_strength,C",po::value<double>()->default_value(1.0), "Regularization strength")
("correction_buffers,m", po::value<int>()->default_value(10), "LBFGS correction buffers");
po::options_description clo("Command line options");
clo.add_options()
("config,c", po::value<string>(&cfg_file), "Configuration file")
("help,?", "Print this help message and exit");
po::options_description dconfig_options, dcmdline_options;
dconfig_options.add(opts);
dcmdline_options.add(dconfig_options).add(clo);
po::store(parse_command_line(argc, argv, dcmdline_options), *conf);
if (cfg_file.size() > 0) {
ReadFile rf(cfg_file);
po::store(po::parse_config_file(*rf.stream(), dconfig_options), *conf);
}
if (conf->count("help")) {
cerr << dcmdline_options << endl;
exit(1);
}
}
void AddFeatures(double prob, const SparseVector<double>& fmap, vector<double>* g) {
for (SparseVector<double>::const_iterator it = fmap.begin(); it != fmap.end(); ++it)
(*g)[it->first] += it->second * prob;
}
double ApplyRegularizationTerms(const double C,
const vector<double>& weights,
vector<double>* g) {
assert(weights.size() == g->size());
double reg = 0;
for (size_t i = 0; i < weights.size(); ++i) {
// const double prev_w_i = (i < prev_weights.size() ? prev_weights[i] : 0.0);
const double& w_i = weights[i];
double& g_i = (*g)[i];
reg += C * w_i * w_i;
g_i += 2 * C * w_i;
// reg += T * (w_i - prev_w_i) * (w_i - prev_w_i);
// g_i += 2 * T * (w_i - prev_w_i);
}
return reg;
}
int main(int argc, char** argv) {
int rank = 0;
int size = 1;
po::variables_map conf;
InitCommandLine(argc, argv, &conf);
ArcFeatureFunctions ffs;
vector<TrainingInstance> corpus;
TrainingInstance::ReadTrainingCorpus(conf["training_data"].as<string>(), &corpus, rank, size);
vector<ArcFactoredForest> forests(corpus.size());
SparseVector<double> empirical;
bool flag = false;
for (int i = 0; i < corpus.size(); ++i) {
TrainingInstance& cur = corpus[i];
if (rank == 0 && (i+1) % 10 == 0) { cerr << '.' << flush; flag = true; }
if (rank == 0 && (i+1) % 400 == 0) { cerr << " [" << (i+1) << "]\n"; flag = false; }
ffs.PrepareForInput(cur.ts);
SparseVector<weight_t> efmap;
for (int j = 0; j < cur.tree.h_m_pairs.size(); ++j) {
efmap.clear();
ffs.EdgeFeatures(cur.ts, cur.tree.h_m_pairs[j].first,
cur.tree.h_m_pairs[j].second,
&efmap);
cur.features += efmap;
}
for (int j = 0; j < cur.tree.roots.size(); ++j) {
efmap.clear();
ffs.EdgeFeatures(cur.ts, -1, cur.tree.roots[j], &efmap);
cur.features += efmap;
}
empirical += cur.features;
forests[i].resize(cur.ts.words.size());
forests[i].ExtractFeatures(cur.ts, ffs);
}
if (flag) cerr << endl;
//cerr << "EMP: " << empirical << endl; //DE
vector<weight_t> weights(FD::NumFeats(), 0.0);
if (conf.count("weights"))
Weights::InitFromFile(conf["weights"].as<string>(), &weights);
vector<weight_t> g(FD::NumFeats(), 0.0);
cerr << "features initialized\noptimizing...\n";
boost::shared_ptr<BatchOptimizer> o;
int every = corpus.size() / 20;
if (!every) ++every;
o.reset(new LBFGSOptimizer(g.size(), conf["correction_buffers"].as<int>()));
int iterations = 1000;
for (int iter = 0; iter < iterations; ++iter) {
cerr << "ITERATION " << iter << " " << flush;
fill(g.begin(), g.end(), 0.0);
for (SparseVector<double>::const_iterator it = empirical.begin(); it != empirical.end(); ++it)
g[it->first] = -it->second;
double obj = -empirical.dot(weights);
// SparseVector<double> mfm; //DE
for (int i = 0; i < corpus.size(); ++i) {
if ((i + 1) % every == 0) cerr << '.' << flush;
const int num_words = corpus[i].ts.words.size();
forests[i].Reweight(weights);
prob_t z;
forests[i].EdgeMarginals(&z);
obj -= log(z);
//cerr << " O = " << (-corpus[i].features.dot(weights)) << " D=" << -lz << " OO= " << (-corpus[i].features.dot(weights) - lz) << endl;
//cerr << " ZZ = " << zz << endl;
for (int h = -1; h < num_words; ++h) {
for (int m = 0; m < num_words; ++m) {
if (h == m) continue;
const ArcFactoredForest::Edge& edge = forests[i](h,m);
const SparseVector<weight_t>& fmap = edge.features;
double prob = edge.edge_prob.as_float();
if (prob < -0.000001) { cerr << "Prob < 0: " << prob << endl; prob = 0; }
if (prob > 1.000001) { cerr << "Prob > 1: " << prob << endl; prob = 1; }
AddFeatures(prob, fmap, &g);
//mfm += fmap * prob; // DE
}
}
}
//cerr << endl << "E: " << empirical << endl; // DE
//cerr << "M: " << mfm << endl; // DE
double r = ApplyRegularizationTerms(conf["regularization_strength"].as<double>(), weights, &g);
double gnorm = 0;
for (int i = 0; i < g.size(); ++i)
gnorm += g[i]*g[i];
ostringstream ll;
ll << "ITER=" << (iter+1) << "\tOBJ=" << (obj+r) << "\t[F=" << obj << " R=" << r << "]\tGnorm=" << sqrt(gnorm);
cerr << ' ' << ll.str().substr(ll.str().find('\t')+1) << endl;
obj += r;
assert(obj >= 0);
o->Optimize(obj, g, &weights);
Weights::ShowLargestFeatures(weights);
const bool converged = o->HasConverged();
const char* ofname = converged ? "weights.final.gz" : "weights.cur.gz";
if (converged || ((iter+1) % conf["output_every_i_iterations"].as<unsigned>()) == 0) {
cerr << "writing..." << flush;
const string sl = ll.str();
Weights::WriteToFile(ofname, weights, true, &sl);
cerr << "done" << endl;
}
if (converged) { cerr << "CONVERGED\n"; break; }
}
return 0;
}
|