1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
|
\documentclass{beamer}
\mode<presentation>
{
\usetheme{Boadilla}
\setbeamercovered{transparent}}
\usepackage[english]{babel}
\usepackage{times}
\usepackage{xcolor}
\usepackage{colortbl}
%\usepackage{subfigure}
\usepackage{fontspec}
\usepackage{xunicode}
\usepackage{xltxtra}
\usepackage{booktabs}
\newenvironment{CJK}{\fontspec[Scale=0.9]{PMingLiU}}{}
\newenvironment{Geeza}{\fontspec[Scale=0.9]{Geeza Pro}}{}
%% for tables
\newcommand{\mc}{\multicolumn}
\newcommand{\lab}[1]{\multicolumn{1}{c}{#1}}
\newcommand{\ind}[1]{{\fboxsep1pt\raisebox{-.5ex}{\fbox{{\tiny #1}}}}}
\newcommand{\IND}[1]{{\fboxsep1pt\raisebox{0ex}{\fbox{{\small #1}}}}}
\newcommand\production[2]{\ensuremath{\langle\mbox{#1}, \mbox{#2}\rangle}}
%% markup
\newcommand{\buffer}[1]{{\color{blue}\textbf{#1}}}
\newcommand{\pred}[1]{\code{#1}}
%% colors
\newcommand{\textred}[1]{\alert{#1}}
\newcommand{\textblue}[1]{\buffer{#1}}
\definecolor{tablecolor}{cmyk}{0,0.3,0.3,0}
\newcommand{\keytab}[1]{\mc{1}{>{\columncolor{tablecolor}}d}{#1}}
% rules
\newcommand{\psr}[2]{#1 $\rightarrow \langle $ #2 $\rangle$}
\newenvironment{unpacked_itemize}{
\begin{itemize}
\setlength{\itemsep}{10pt}
\setlength{\parskip}{0pt}
\setlength{\parsep}{0pt}
}{\end{itemize}}
\newcommand{\condon}{\hspace{0pt} | \hspace{1pt}}
\definecolor{darkblue}{rgb}{0,0,0.6}
\newcommand{\blueexample}[1]{\textcolor{darkblue}{\rm #1}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\newcommand{\ws}{\ensuremath{\vec{w}}}
\newcommand{\pu}{\ensuremath{P_0}}
\newcommand{\bx}{\mathbf{x}}
\newcommand{\bz}{\mathbf{z}}
\newcommand{\bd}{\mathbf{d}}
\newcommand{\by}{\mathbf{y}}
\newcommand\bleu{${B{\scriptstyle LEU}}$}
\title[Models of SCFG Induction]{Models of Synchronous Grammar Induction for SMT}
\author[CLSP Workshop 2010]{
Workshop 2010
%Phil Blunsom$^1$ \and Trevor Cohn$^2$ \and Chris Dyer$^3$ \and Adam Lopez$^4$
}
\institute[Baltimore]{
The Center for Speech and Language Processing \\ Johns Hopkins University
% $^1$University of Oxford\\
% $^2$University of Sheffield\\
% $^3$Carnegie Mellon University\\
% $^4$University of Edinburgh
}
\date[June 28]{June 28, 2010}
%\subject{Unsupervised models of Synchronous Grammar Induction for SMT}
%\pgfdeclareimage[height=1.0cm]{university-logo}{logo}
%\logo{\pgfuseimage{university-logo}}
%\AtBeginSection[]
%{
% \begin{frame}<beamer>{Outline}
% %\tableofcontents[currentsection,currentsubsection]
% \tableofcontents[currentsection]
% \end{frame}
%}
%\beamerdefaultoverlayspecification{<+->}
\begin{document}
\begin{frame}
\titlepage
\end{frame}
%\begin{frame}{Outline}
% \tableofcontents
% You might wish to add the option [pausesections]
%\end{frame}
%\begin{frame}{Outline}
% \tableofcontents
% % You might wish to add the option [pausesections]
%\end{frame}
%\begin{frame}[t]{Team members}
%\begin{center}
%{\bf Senior Members} \\
% Phil Blunsom (Oxford)\\
% Trevor Cohn (Sheffield)\\
% Adam Lopez (Edinburgh/COE)\\
% Chris Dyer (CMU)\\
% Jonathan Graehl (ISI)\\
% Chris Callison-Burch (JHU)\\
%\vspace{0.1in}
%{\bf Graduate Students} \\
% Jan Botha (Oxford) \\
% Vladimir Eidelman (Maryland) \\
% Ziyuan Wang (JHU) \\
% ThuyLinh Nguyen (CMU) \\
%\vspace{0.1in}
%{\bf Undergraduate Students} \\
% Olivia Buzek (Maryland) \\
% Desai Chen (CMU) \\
%\end{center}
%\end{frame}
\begin{frame}[t]{Statistical machine translation}
%\vspace{1.0cm}
\begin{exampleblock}{Urdu $\rightarrow$ English}
\begin{figure}
{\centering \includegraphics[scale=0.55]{urdu.pdf}}
\end{figure}
\vspace{0.10cm}
\end{exampleblock}
\begin{itemize}
\item Statistical machine translation: Learn how to translate from parallel corpora.
\end{itemize}
\end{frame}
\begin{frame}[t]{Statistical machine translation: }
%\vspace{1.0cm}
\begin{exampleblock}{Urdu $\rightarrow$ English}
\begin{figure}
{\centering \includegraphics[scale=0.55]{urdu-ref.pdf}}
\end{figure}
\end{exampleblock}
\begin{itemize}
\item Statistical machine translation: Learn how to translate from parallel corpora
\end{itemize}
\end{frame}
\begin{frame}[t]{Statistical machine translation: state-of-the-art}
%\vspace{1.0cm}
\begin{exampleblock}{Urdu $\rightarrow$ English}
\begin{figure}
{\centering \includegraphics[scale=0.55]{urdu-bl.pdf}}
\end{figure}
\end{exampleblock}
\begin{itemize}
\item Current state-of-the-art translation models struggle with language pairs which exhibit large differences in structure.
\end{itemize}
\end{frame}
\begin{frame}[t]{Statistical machine translation: limitations}
\vspace{1.0cm}
\begin{exampleblock}{Structural divergence between languages:}
%\vspace{0.3cm}
\begin{table}
\centering
\only<1>{
\begin{tabular}{|l|l|}
\hline
{\bf English} & {\bf Who wrote this letter?} \\
\hline
Arabic & \begin{Geeza}من الذي كتب هذه الرسالة؟\end{Geeza} \\
& \textcolor{gray}{(function-word)} (who) (wrote) (this) (the-letter) \\
\hline
Chinese & \begin{CJK}这封 信 是 谁 写 的 ?\end{CJK} \\
& (this) (letter) (be) (who) (write) (come-from) \textcolor{gray}{(function-word)} \\
\hline
\end{tabular}
}
\only<2>{
\begin{tabular}{|l|l|}
\hline
{\bf English} & {\bf \textcolor{blue}{Who} \textcolor{green}{wrote} \textcolor{red}{this} \textcolor{orange}{letter?}} \\
\hline
Arabic & \begin{Geeza}من الذي كتب هذه الرسالة؟\end{Geeza} \\
& \textcolor{gray}{(function-word)} \textcolor{blue}{(who)} \textcolor{green}{(wrote)} \textcolor{red}{(this)} \textcolor{orange}{(the-letter)} \\
\hline
Chinese & \begin{CJK}这封 信 是 谁 写 的 ?\end{CJK} \\
& (this) (letter) (be) (who) (write) (come-from) \textcolor{gray}{(function-word)} \\
\hline
\end{tabular}
}
\only<3->{
\begin{tabular}{|l|l|}
\hline
{\bf English} & {\bf \textcolor{blue}{Who wrote} \textcolor{red}{this letter}?} \\
\hline
Arabic & \begin{Geeza}من الذي كتب هذه الرسالة؟\end{Geeza} \\
& \textcolor{gray}{(function-word)} (who) (wrote) (this) (the-letter) \\
\hline
Chinese & \begin{CJK}\textcolor{red}{这封 信} \textcolor{blue}{是 谁 写} 的 ?\end{CJK} \\
& \textcolor{red}{(this) (letter)} \textcolor{blue}{(be) (who) (write) (come-from)} \textcolor{gray}{(function-word)} \\
\hline
\end{tabular}
}
\end{table}
\end{exampleblock}
\only<4>{
\begin{itemize}
\item Phrasal translation equivalences
\item Constituent reordering
\item Morphology
\end{itemize}
}
\end{frame}
\begin{frame}[t]{Statistical machine translation: successes}
\begin{center}
\includegraphics[scale=0.35]{GoogleTranslateLanguages.pdf}
\end{center}
\end{frame}
\begin{frame}
\frametitle{Using syntax in Machine Translation:}
\footnotesize
\begin{block}{Synchronous Context Free Grammar (SCFG)}
\begin{figure}
\begin{align*}
\alert<2>{S} & \alert<2>{\rightarrow \langle X\ind{1},\ X\ind{1} \rangle}
&\quad \alert<3,5>{X} & \alert<3,5>{\rightarrow \langle X\ind{1}\ X\ind{2},\ X\ind{1}\ X\ind{2} \rangle} \\
\alert<7>{X} & \alert<7>{\rightarrow \langle X\ind{1}\ X\ind{2},\ X\ind{2}\ X\ind{1} \rangle} & &\\
\alert<4>{X} & \alert<4>{\rightarrow \langle Sie,\ She \rangle}
&\quad \alert<6>{X} & \alert<6>{\rightarrow \langle will,\ wants\ to \rangle} \\
\alert<8>{X} & \alert<8>{\rightarrow \langle eine\ Tasse\ Kaffee,\ a\ cup\ of\ coffee \rangle}
&\quad \alert<9>{X} & \alert<9>{\rightarrow \langle trinken,\ drink\rangle} \\
\end{align*}
\end{figure}
\end{block}
\begin{exampleblock}{Example Derivation}
%\begin{figure}
%\begin{align*}
\center
\vspace{0.2cm}
\onslide<2->{\alert<2>{$S \Rightarrow \langle X\ind{1},\ X\ind{1}\ \rangle$}} \quad \onslide<3->{\alert<3>{$\Rightarrow \langle X\ind{2}\ X\ind{3},\ X\ind{2}\ X\ind{3} \rangle$ \\}}
\vspace{0.2cm}
\onslide<4->{\alert<4>{$\Rightarrow \langle Sie\ X\ind{3},\ She\ X\ind{3} \rangle$}} \quad \onslide<5->{\alert<5>{$\Rightarrow \langle Sie\ X\ind{4}\ X\ind{5},\ She\ X\ind{4}\ X\ind{5} \rangle$ \\}}
\vspace{0.2cm}
\onslide<6->{\alert<6>{$\Rightarrow \langle Sie\ will\ X\ind{5},\ She\ wants\ to\ X\ind{5} \rangle$ }} \quad \onslide<7->{\alert<7>{$\Rightarrow \langle Sie\ will\ X\ind{6} X\ind{7},\ She\ wants\ to\ X\ind{7} X\ind{6} \rangle$ \\}}
\vspace{0.2cm}
\onslide<8->{\alert<8>{$\Rightarrow \langle Sie\ will\ eine\ Tasse\ Kaffee\ X\ind{7},\ She\ wants\ to\ X\ind{7}\ a\ cup\ of\ coffee\rangle$} \\}
\vspace{0.2cm}
\onslide<9->{\alert<9>{$\Rightarrow \langle Sie\ will\ eine\ Tasse\ Kaffee\ trinken,\ She\ wants\ to\ drink\ a\ cup\ of\ coffee\rangle$}}
\vspace{0.2cm}
%\end{align*}
%\end{figure}
\end{exampleblock}
\end{frame}
\begin{frame}[t]{Models of translation}
\begin{block}{Unlabelled SCFG: Hiero}
\begin{center}
\includegraphics[scale=0.55]{JeNeVeuxPasTravailler-Hiero.pdf}
\hspace{0.3in}
\includegraphics[scale=0.55]{JeVeuxTravailler-Hiero.pdf}
\end{center}
\end{block}
\begin{unpacked_itemize}
\only<1>{\item S -> $\langle$ X\ind{1}, X\ind{1} $\rangle$, \\ S -> $\langle$ S\ind{1} X\ind{2}, S\ind{1} X\ind{2} $\rangle$}
\only<1>{\item X -> $\langle$ Je, I $\rangle$, \hspace{0.5in} X -> $\langle$ ne X\ind{1} pas, do not X\ind{1} $\rangle$, \\ X -> $\langle$ veux, want to$\rangle$, X -> $\langle$ travailler, work $\rangle$}
\only<2->{
\item Only requires the parallel corpus.
\item But weak model of sentence structure.
}
\end{unpacked_itemize}
\end{frame}
\begin{frame}[t]{Models of translation}
\begin{exampleblock}{Supervised SCFG: Syntactic Tree-to-String}
\begin{center}
\includegraphics[scale=0.55]{JeNeVeuxPasTravailler-tsg.pdf}
\hspace{0.3in}
\includegraphics[scale=0.55]{JeVeuxTravailler-tsg.pdf}
\end{center}
\end{exampleblock}
\begin{itemize}
\only<1>{\item S -> $\langle$ NP\ind{1} VP\ind{2}, NP\ind{1} VP\ind{2} $\rangle$, \\ NP -> $\langle$ PRP\ind{1}, PRP\ind{1} $\rangle$}
\only<1>{\item PRP -> $\langle$ Je, I $\rangle$, \\ VP -> $\langle$ ne veux pas VB\ind{1}, do not want to VB\ind{1} $\rangle$, \\ VB -> $\langle$ travailler, work $\rangle$}
\only<2->{
\item Strong model of sentence structure.
\item Reliant on a treebank to train the parser.
}
\end{itemize}
\end{frame}
\begin{frame}[t]{Impact}
\vspace{0.5in}
\begin{table}
\begin{tabular}{l|rr}
\hline
Language & Words & Domain \\ \hline
English & 4.5M& Financial news \\
Chinese & 0.5M & Broadcasting news \\
Arabic & 300K (1M planned) & News \\
Korean & 54K & Military \\ \hline
\end{tabular}
\caption{Major treebanks: data size and domain \label{table_treebanks_size}}
\end{table}
\end{frame}
\begin{frame}[t]{Impact}
Parallel corpora far exceed treebanks (millions of words):
\begin{figure}
{\centering \includegraphics[scale=0.7]{resource_matrix.pdf}}
\end{figure}
\end{frame}
\begin{frame}[t]{Models of translation}
\begin{exampleblock}{Phrase extraction:}
\begin{center}
\only<1>{\includegraphics[scale=0.8]{PhraseExtraction6.pdf}\\[1cm]}
\only<2>{\includegraphics[scale=0.8]{PhraseExtraction5.pdf}\\[1cm]}
\only<3>{\includegraphics[scale=0.8]{PhraseExtraction4.pdf}\\[1cm]}
\only<4>{\includegraphics[scale=0.8]{PhraseExtraction3.pdf}\\[1cm]}
\only<5>{\includegraphics[scale=0.8]{PhraseExtraction2.pdf}\\[1cm]}
\only<6>{\includegraphics[scale=0.8]{PhraseExtraction1.pdf}\\[1cm]}
\only<7>{\includegraphics[scale=0.8]{PhraseExtraction.pdf}\\[1cm]}
\end{center}
\end{exampleblock}
\only<2->{
\begin{unpacked_itemize}
\only<2>{\item Use a word-based translation model to annotate the parallel corpus with word-alignments}
\only<3->{\item $\langle$ Je, I $\rangle$, $\langle$ veux, want to $\rangle$, $\langle$ travailler, work $\rangle$}\only<4->{, $\langle$ ne veux pas, do not want to $\rangle$}\only<5->{, $\langle$ ne veux pas travailler, do not want to work $\rangle$}\only<6->{, $\langle$ Je ne veux pas, I do not want to $\rangle$}\only<7->{, $\langle$ Je ne veux pas travailler, I do not want to work $\rangle$}
\end{unpacked_itemize}
}
\end{frame}
\begin{frame}[t]{Models of translation}
\begin{exampleblock}{SCFG Rule extraction:}
\begin{center}
\only<1>{\includegraphics[scale=0.8]{HieroExtraction1.pdf}\\[1cm]}
\only<2>{\includegraphics[scale=0.8]{HieroExtraction2.pdf}\\[1cm]}
\only<3>{\includegraphics[scale=0.8]{HieroExtraction3.pdf}\\[1cm]}
\only<4>{\includegraphics[scale=0.8]{HieroExtraction4.pdf}\\[1cm]}
\end{center}
\end{exampleblock}
\begin{unpacked_itemize}
\only<1>{ \item X -> $\langle$ ne veux pas, do not want to $\rangle$ }
\only<2>{ \item X -> $\langle$ ne veux pas, do not want to $\rangle$, \item X -> $\langle$ ne X\ind{1} pas, do not X\ind{1} $\rangle$ }
\only<3>{ \item VP$/$NN -> $\langle$ ne veux pas, do not want to $\rangle$, \item VP$/$NN -> $\langle$ ne V\ind{1} pas, do not V\ind{1} $\rangle$ }
\only<4>{ \item X10 -> $\langle$ ne veux pas, do not want to $\rangle$, \item X10 -> $\langle$ ne X14\ind{1} pas, do not X14\ind{1} $\rangle$ }
\end{unpacked_itemize}
\end{frame}
\begin{frame}[t]{Models of translation}
\vspace{0.25in}
\begin{block}{This workshop}
\begin{center}
\includegraphics[scale=0.55]{JeNeVeuxPasTravailler-Hiero-labelled.pdf}
\hspace{0.3in}
\includegraphics[scale=0.55]{JeVeuxTravailler-Hiero-labelled.pdf}
\end{center}
\end{block}
\begin{unpacked_itemize}
\only<1>{\item S -> $\langle$ X4\ind{1} X2\ind{2}, X4\ind{1} X2\ind{2} $\rangle$, X4 -> $\langle$ X1\ind{1} X10\ind{2}, X1\ind{1} X10\ind{2} $\rangle$}
\only<1>{\item X1 -> $\langle$ Je, I $\rangle$, X10 -> $\langle$ ne X14\ind{1} pas, do not X14\ind{1} $\rangle$, \\ X14 -> $\langle$ veux, want to$\rangle$, X10 -> $\langle$ travailler, work $\rangle$}
\only<2->{
\item Only requires the parallel corpus.
\item But also gives a strong model of sentence structure.
}
\end{unpacked_itemize}
\end{frame}
\begin{frame}[t]{Workshop overview}
Input:
\begin{itemize}
% \item Joshua decoder
\item Existing procedures for unlabelled synchronous grammar extraction
\end{itemize}
\vspace{0.3in}
Output:
\begin{itemize}
\item New unsupervised models for large scale synchronous grammar extraction,
% \item An implementation of this model,
\item A comparison and analysis of the existing and proposed models,
\item Extended decoders (cdec/Joshua) capable of working efficiently with these models.
\end{itemize}
\end{frame}
%\begin{frame}[t]{Models of translation}
%\begin{block}{Hierarchical}
% \begin{center}
% \includegraphics[scale=0.55]{JeNeVeuxPasTravailler-Hiero.pdf}
% \hspace{0.3in}
% \includegraphics[scale=0.55]{JeVeuxTravailler-Hiero.pdf}
% \end{center}
%\end{block}
%\end{frame}
%\begin{frame}[t]{Impact}
% \begin{center}
% \includegraphics[scale=0.3]{ccb_tree.pdf}
% \end{center}
%\end{frame}
%\begin{frame}[t]{Models of translation}
%\vspace{0.25in}
%\begin{block}{Hierarchical}
% \begin{center}
% \includegraphics[scale=0.55]{JeNeVeuxPasTravailler-Hiero-labelled.pdf}
% \hspace{0.3in}
% \includegraphics[scale=0.55]{JeVeuxTravailler-Hiero-labelled.pdf}
% \end{center}
%\end{block}
%%\begin{itemize}
%%\item \alert{AIM: Implement a large scale open-source synchronous constituent learning system.}
%%\item \alert{AIM: Investigate and understand the relationship between the choice of synchronous grammar and SMT performance,}
%%\item \alert{AIM: and fix our decoders accordingly.}
%%\end{itemize}
%\end{frame}
%
%\begin{frame}[t]{Evaluation goals}
%We will predominately evaluate using BLEU, but also use automatic structured metrics and perform small scale human evaluation:
%\vspace{0.25in}
%\begin{unpacked_itemize}
%\item Evaluate phrasal, syntactic, unsupervised syntactic,
%\item Aim 1: Do no harm (not true of existing syntactic approach)
%\item Aim 2: Exceed the performance of current non-syntactic systems.
%\item Aim 3: Meet or exceed performance of existing syntactic systems.
%\end{unpacked_itemize}
%\end{frame}
%\begin{frame}[t]{Impact}
%Success will have a significant impact on two areas of CL:
%\vspace{0.25in}
%\begin{unpacked_itemize}
%\item Machine translation
%\begin{unpacked_itemize}
% \item Make the benefits of richly structured translation models available to a much wider range of researchers and for a wider range of languages.
%% \item Change the research outlook of the field.
%\end{unpacked_itemize}
%\item Grammar induction:
%\begin{unpacked_itemize}
% \item Provide an empirical validation of state-of-the-art grammar induction techniques.
%\end{unpacked_itemize}
%\end{unpacked_itemize}
%\end{frame}
\begin{frame}[t]{Workshop Streams}
Expand, describing challenges faced in each stream.
\vspace{0.25in}
\begin{unpacked_itemize}
\item Implement scalable SCFG grammar extraction algorithms.
\item Improve SCFG decoders to efficiently handle the grammars produce.
\item Investigate discriminative training regimes to leverage features extracted from these grammars.
\end{unpacked_itemize}
\end{frame}
\begin{frame}[t]{Extrinsic evaluation: Bleu}
\begin{exampleblock}{
\only<1>{Ngram overlap metrics:}
\only<2>{Ngram overlap metrics: 1-gram precision $p_1 = \frac{11}{14}$}
\only<3>{Ngram overlap metrics: 2-gram precision $p_2 = \frac{5}{13}$}
\only<4>{Ngram overlap metrics: 3-gram precision $p_3 = \frac{2}{12}$}
\only<5>{Ngram overlap metrics: 4-gram precision $p_4 = \frac{1}{11}$}
}
\vspace{0.2cm}
{\em Source}: \begin{CJK}欧盟 办事处 与 澳洲 大使馆 在 同 一 建筑 内 \end{CJK} \\
\vspace{0.3cm}
\only<1>{{\em Candidate}: the chinese embassy in australia and the eu representative office in the same building}
\only<2>{{\em Candidate}: \alert{the} chinese \alert{embassy} \alert{in} australia \alert{and} \alert{the} \alert{eu} representative \alert{office} \alert{in} \alert{the} \alert{same} \alert{building}}
\only<3>{{\em Candidate}: the chinese embassy in australia \alert{and} \alert{the} \alert{eu} representative office \alert{in} \alert{the} \alert{same} \alert{building}}
\only<4>{{\em Candidate}: the chinese embassy in australia and the eu representative office \alert{in} \alert{the} \alert{same} \alert{building}}
\only<5>{{\em Candidate}: the chinese embassy in australia and the eu representative office \alert{in} \alert{the} \alert{same} \alert{building}}
\vspace{0.2cm}
\end{exampleblock}
\begin{block}{Reference Translations:}
\begin{enumerate}
\only<1>{\item the eu office and the australian embassy are housed in the same building}
\only<2>{\item \alert{the} \alert{eu} \alert{office} \alert{and} \alert{the} australian \alert{embassy} are housed \alert{in} \alert{the} \alert{same} \alert{building}}
\only<3>{\item \alert{the} \alert{eu} office \alert{and} \alert{the} australian embassy are housed \alert{in} \alert{the} \alert{same} \alert{building}}
\only<4>{\item the eu office and the australian embassy are housed \alert{in} \alert{the} \alert{same} \alert{building}}
\only<5>{\item the eu office and the australian embassy are housed \alert{in} \alert{the} \alert{same} \alert{building}}
\only<1>{\item the european union office is in the same building as the australian embassy}
\only<2>{\item \alert{the} european union \alert{office} is \alert{in} \alert{the} \alert{same} \alert{building} as \alert{the} australian \alert{embassy}}
\only<3>{\item the european union office is \alert{in} \alert{the} \alert{same} \alert{building} as the australian embassy}
\only<4>{\item the european union office is \alert{in} \alert{the} \alert{same} \alert{building} as the australian embassy}
\only<5>{\item the european union office is \alert{in} \alert{the} \alert{same} \alert{building} as the australian embassy}
\only<1>{\item the european union 's office and the australian embassy are both located in the same building}
\only<2>{\item \alert{the} european union 's \alert{office} \alert{and} \alert{the} australian \alert{embassy} are both located \alert{in} \alert{the} \alert{same} \alert{building}}
\only<3>{\item the european union 's office \alert{and} \alert{the} australian embassy are both located \alert{in} \alert{the} \alert{same} \alert{building}}
\only<4>{\item the european union 's office and the australian embassy are both located \alert{in} \alert{the} \alert{same} \alert{building}}
\only<5>{\item the european union 's office and the australian embassy are both located \alert{in} \alert{the} \alert{same} \alert{building}}
\only<1>{\item the eu 's mission is in the same building with the australian embassy}
\only<2>{\item \alert{the} \alert{eu} 's mission is \alert{in} \alert{the} \alert{same} \alert{building} with \alert{the} australian \alert{embassy}}
\only<3>{\item \alert{the} \alert{eu} 's mission is \alert{in} \alert{the} \alert{same} \alert{building} with the australian embassy}
\only<4>{\item the eu 's mission is \alert{in} \alert{the} \alert{same} \alert{building} with the australian embassy}
\only<5>{\item the eu 's mission is \alert{in} \alert{the} \alert{same} \alert{building} with the australian embassy}
\end{enumerate}
\end{block}
\end{frame}
\begin{frame}[t]{Extrinsic evaluation: Bleu}
\begin{exampleblock}{BLEU}
\Large
\begin{align}
\nonumber BLEU_n = BP \times \exp{\left( \sum_{n=1}^{N} w_n \log{p_n} \right) }\\
\nonumber BP = \left\{
\begin{array}{ll}
1 & \mbox{if $c > r$} \\
\exp{(1-\frac{R'}{C'})} & \mbox{if $c <= r$}
\end{array} \right.
\end{align}
\end{exampleblock}
\begin{itemize}
\item {\em BP} is the {\em Brevity Penalty}, $w_n$ is the ngram length weights (usually $\frac{1}{n}$), $p_n$ is precision of ngram predictions, $R'$ is the total length of all references and $C'$ is the sum of the best matching candidates.
\item statistics are calculate over the whole {\em document}, i.e. all the sentences.
\end{itemize}
\end{frame}
\begin{frame}[t]{Language pairs}
\begin{unpacked_itemize}
\item BTEC Chinese-English:
\begin{itemize}
\item 44k sentence pairs, short sentences
\item Widely reported `prototyping' corpus
\item Hiero baseline score: 57.0 (16 references)
\end{itemize}
\item NIST Urdu-English:
\begin{itemize}
\item 50k sentence pairs
\item Hiero baseline score: 21.1 (4 references)
\item Major challenges: major long-range reordering, SOV word order
\end{itemize}
\item Europarl Dutch-French:
\begin{itemize}
\item 100k sentence pairs, standard Europarl test sets
\item Hiero baseline score: Europarl 2008 - 26.3 (1 reference)
\item Major challenges: V2 / V-final word order, morphology
\end{itemize}
\end{unpacked_itemize}
\end{frame}
\begin{frame}[t]{Outline}
\begin{columns}
\begin{column}{0.2\textwidth}
\begin{exampleblock}{}
\begin{figure}
\tiny
{\centering \includegraphics[scale=0.07]{trevor.jpg}} \\
Trevor Cohn \\
{\centering \includegraphics[scale=0.06]{dyer.jpg}} \\
Chris Dyer\\
{\centering \includegraphics[scale=0.11]{jan.jpg}} \\
Jan Botha \\
{\centering \includegraphics[scale=0.06]{olivia.jpg}} \\
Olivia Buzek\\
{\centering \includegraphics[scale=0.10]{desai.jpg}}\\
Desai Chen\\
\end{figure}
\end{exampleblock}
\vspace{0.25in}
\end{column}
\begin{column}{0.7\textwidth}
\begin{unpacked_itemize}
\item 1:55pm Experimental Setup. Trevor
\item 2:10pm Non-parametric models of category induction. Chris
\item 2:25pm Inducing categories for morphology. Jan
\item 2:35pm Smoothing, backoff and hierarchical grammars. Olivia
\item 2:45pm Parametric models: posterior regularisation. Desai
\item 3:00pm Break.
\end{unpacked_itemize}
\end{column}
\end{columns}
\end{frame}
\begin{frame}[t]{Outline}
\begin{columns}
\begin{column}{0.2\textwidth}
\begin{exampleblock}{}
\begin{figure}
\tiny
{\centering \includegraphics[scale=0.05]{vlad.jpg}} \\
Vlad Eidelman\\
{\centering \includegraphics[scale=0.15]{ziyuan.pdf}} \\
Ziyuan Wang\\
{\centering \includegraphics[scale=0.06]{adam.jpg}} \\
Adam Lopez\\
{\centering \includegraphics[scale=0.10]{jon.pdf}} \\
Jon Graehl\\
{\centering \includegraphics[scale=0.15]{linh.pdf}} \\
ThuyLinh Nguyen\\
\end{figure}
\end{exampleblock}
\vspace{0.25in}
\end{column}
\begin{column}{0.7\textwidth}
\begin{itemize}
\setlength{\itemsep}{25pt}
\setlength{\parskip}{0pt}
\setlength{\parsep}{0pt}
\item 3:15pm Training models with rich features spaces. Vlad
\item 3:30pm Decoding with complex grammars. Adam
\item 4:00pm Closing remarks. Phil
\item 4:05pm Finish.
\end{itemize}
\end{column}
\end{columns}
\end{frame}
\begin{frame}[t]{Remember:}
\vspace{0.5in}
\begin{unpacked_itemize}
\item Idea: Learn synchronous grammar labels which encode substituteability; phrases which occur in the same context should receive the same label.
\item Result: Better models of translation structure, morphology and improved decoding algorithms.
\end{unpacked_itemize}
\end{frame}
\begin{frame}[t]{This slide is intentionally left blank.}
\end{frame}
\begin{frame}[t]{Outline}
\begin{columns}
\begin{column}{0.2\textwidth}
\begin{exampleblock}{}
\begin{figure}
\tiny
{\centering \includegraphics[scale=0.07]{trevor.jpg}} \\
Trevor Cohn \\
{\centering \includegraphics[scale=0.06]{dyer.jpg}} \\
Chris Dyer\\
{\centering \includegraphics[scale=0.11]{jan.jpg}} \\
Jan Botha \\
{\centering \includegraphics[scale=0.06]{olivia.jpg}} \\
Olivia Buzek\\
{\centering \includegraphics[scale=0.10]{desai.jpg}}\\
Desai Chen\\
\end{figure}
\end{exampleblock}
\vspace{0.25in}
\end{column}
\begin{column}{0.7\textwidth}
\begin{unpacked_itemize}
\only<1>{\item \alert{1:55pm Motivation and experimental methodology. Trevor}}
\only<2->{\item 1:55pm Motivation and experimental methodology. Trevor}
\only<2>{\item \alert{2:10pm Non-parametric models of category induction. Chris}}
\only<1,3->{\item 2:10pm Non-parametric models of category induction. Chris}
\only<3>{\item \alert{2:25pm Inducing categories for morphology. Jan}}
\only<1,2,4->{\item 2:25pm Inducing categories for morphology. Jan}
\only<4>{\item \alert{2:35pm Smoothing, backoff and hierarchical grammars. Olivia}}
\only<1-3,5->{\item 2:35pm Smoothing, backoff and hierarchical grammars. Olivia}
\only<5>{\item \alert{2:45pm Parametric models: posterior regularisation. Desai}}
\only<1-4,6->{\item 2:45pm Parametric models: posterior regularisation. Desai}
\only<6>{\item \alert{3:00pm Break.}}
\only<1-5>{\item 3:00pm Break.}
\end{unpacked_itemize}
\end{column}
\end{columns}
\end{frame}
\begin{frame}[t]{Outline}
\begin{columns}
\begin{column}{0.2\textwidth}
\begin{exampleblock}{}
\begin{figure}
\tiny
{\centering \includegraphics[scale=0.05]{vlad.jpg}} \\
Vlad Eidelman\\
{\centering \includegraphics[scale=0.15]{ziyuan.pdf}} \\
Ziyuan Wang\\
{\centering \includegraphics[scale=0.06]{adam.jpg}} \\
Adam Lopez\\
{\centering \includegraphics[scale=0.10]{jon.pdf}} \\
Jon Graehl\\
{\centering \includegraphics[scale=0.15]{linh.pdf}} \\
ThuyLinh Nguyen\\
\end{figure}
\end{exampleblock}
\vspace{0.25in}
\end{column}
\begin{column}{0.7\textwidth}
\begin{itemize}
\setlength{\itemsep}{25pt}
\setlength{\parskip}{0pt}
\setlength{\parsep}{0pt}
\only<1>{\item \alert{3:15pm Training models with rich features spaces. Vlad}}
\only<2->{\item 3:15pm Training models with rich features spaces. Vlad}
\only<2>{\item \alert{3:30pm Decoding with complex grammars. Adam}}
\only<1,3->{\item 3:30pm Decoding with complex grammars. Adam}
\only<3>{\item \alert{4:00pm Closing remarks. Phil}}
\only<1,2,4->{\item 4:00pm Closing remarks. Phil}
\only<4>{\item \alert{4:05pm Finish.}}
\only<1-3>{\item 4:05pm Finish.}
\end{itemize}
\end{column}
\end{columns}
\end{frame}
\begin{frame}[t]{This slide is intentionally left blank.}
\end{frame}
\begin{frame}[t]{Statistical machine translation: state-of-the-art}
%\vspace{1.0cm}
\begin{exampleblock}{Urdu $\rightarrow$ English}
\begin{figure}
{\centering \includegraphics[scale=0.55]{urdu-bl.pdf}}
\end{figure}
\end{exampleblock}
\begin{itemize}
\item Current state-of-the-art translation models struggle with language pairs which exhibit large differences in structure.
\end{itemize}
\end{frame}
\begin{frame}[t]{Statistical machine translation: our unsupervised grammars}
%\vspace{1.0cm}
\begin{exampleblock}{Urdu $\rightarrow$ English}
\begin{figure}
{\centering \includegraphics[scale=0.55]{urdu-25hp.pdf}}
\end{figure}
\end{exampleblock}
\begin{itemize}
\item In this workshop we've made some small steps towards better translations for difficult language pairs.
\end{itemize}
\only<2->{
Google Translate: \\
\hspace{0.25in} {\em *After the attack a number of local residents has blank areas.}
}
\end{frame}
\begin{frame}[t]{Induced Translation Structure}
\begin{center}
\includegraphics[scale=0.32]{joshua_tree19.pdf}
\end{center}
\end{frame}
\begin{frame}[t]{What we've achieved:}
\vspace{0.5in}
\begin{unpacked_itemize}
\item
\item
\end{unpacked_itemize}
\end{frame}
\begin{frame}[t]{We're we'll go from here:}
\vspace{0.5in}
\begin{unpacked_itemize}
\item
\item
\end{unpacked_itemize}
\end{frame}
\end{document}
|