summaryrefslogtreecommitdiff
path: root/rampion/rampion_cccp.cc
blob: 1e36dc5134fd0aa0717faa328c8dd4dfd02b4e2e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
#include <sstream>
#include <iostream>
#include <vector>
#include <limits>

#include <boost/program_options.hpp>
#include <boost/program_options/variables_map.hpp>

#include "filelib.h"
#include "stringlib.h"
#include "weights.h"
#include "hg_io.h"
#include "kbest.h"
#include "viterbi.h"
#include "ns.h"
#include "ns_docscorer.h"
#include "candidate_set.h"

using namespace std;
namespace po = boost::program_options;

void InitCommandLine(int argc, char** argv, po::variables_map* conf) {
  po::options_description opts("Configuration options");
  opts.add_options()
        ("reference,r",po::value<vector<string> >(), "[REQD] Reference translation (tokenized text)")
        ("weights,w",po::value<string>(), "[REQD] Weights files from current iterations")
        ("input,i",po::value<string>()->default_value("-"), "Input file to map (- is STDIN)")
        ("evaluation_metric,m",po::value<string>()->default_value("IBM_BLEU"), "Evaluation metric (ibm_bleu, koehn_bleu, nist_bleu, ter, meteor, etc.)")
        ("kbest_repository,R",po::value<string>(), "Accumulate k-best lists from previous iterations (parameter is path to repository)")
        ("kbest_size,k",po::value<unsigned>()->default_value(500u), "Top k-hypotheses to extract")
        ("cccp_iterations,I", po::value<unsigned>()->default_value(10u), "CCCP iterations (T')")
        ("ssd_iterations,J", po::value<unsigned>()->default_value(5u), "Stochastic subgradient iterations (T'')")
        ("eta", po::value<double>()->default_value(1e-4), "Step size")
        ("regularization_strength,C", po::value<double>()->default_value(1.0), "L2 regularization strength")
        ("alpha,a", po::value<double>()->default_value(10.0), "Cost scale (alpha); alpha * [1-metric(y,y')]")
        ("help,h", "Help");
  po::options_description dcmdline_options;
  dcmdline_options.add(opts);
  po::store(parse_command_line(argc, argv, dcmdline_options), *conf);
  bool flag = false;
  if (!conf->count("reference")) {
    cerr << "Please specify one or more references using -r <REF.TXT>\n";
    flag = true;
  }
  if (!conf->count("weights")) {
    cerr << "Please specify weights using -w <WEIGHTS.TXT>\n";
    flag = true;
  }
  if (flag || conf->count("help")) {
    cerr << dcmdline_options << endl;
    exit(1);
  }
}

struct GainFunction {
  explicit GainFunction(const EvaluationMetric* m) : metric(m) {}
  float operator()(const SufficientStats& eval_feats) const {
    float g = metric->ComputeScore(eval_feats);
    if (!metric->IsErrorMetric()) g = 1 - g;
    return g;
  }
  const EvaluationMetric* metric;
};

template <typename GainFunc>
void CostAugmentedSearch(const GainFunc& gain,
                         const training::CandidateSet& cs,
                         const SparseVector<double>& w,
                         double alpha,
                         SparseVector<double>* fmap) {
  unsigned best_i = 0;
  double best = -numeric_limits<double>::infinity();
  for (unsigned i = 0; i < cs.size(); ++i) {
    double s = cs[i].fmap.dot(w) + alpha * gain(cs[i].eval_feats);
    if (s > best) {
      best = s;
      best_i = i;
    }
  }
  *fmap = cs[best_i].fmap;
}



// runs lines 4--15 of rampion algorithm
int main(int argc, char** argv) {
  po::variables_map conf;
  InitCommandLine(argc, argv, &conf);
  const string evaluation_metric = conf["evaluation_metric"].as<string>();

  EvaluationMetric* metric = EvaluationMetric::Instance(evaluation_metric);
  DocumentScorer ds(metric, conf["reference"].as<vector<string> >());
  cerr << "Loaded " << ds.size() << " references for scoring with " << evaluation_metric << endl;
  double goodsign = -1;
  double badsign = -goodsign;

  Hypergraph hg;
  string last_file;
  ReadFile in_read(conf["input"].as<string>());
  string kbest_repo;
  if (conf.count("kbest_repository")) {
    kbest_repo = conf["kbest_repository"].as<string>();
    MkDirP(kbest_repo);
  }
  istream &in=*in_read.stream();
  const unsigned kbest_size = conf["kbest_size"].as<unsigned>();
  const unsigned tp = conf["cccp_iterations"].as<unsigned>();
  const unsigned tpp = conf["ssd_iterations"].as<unsigned>();
  const double eta = conf["eta"].as<double>();
  const double reg = conf["regularization_strength"].as<double>();
  const double alpha = conf["alpha"].as<double>();
  SparseVector<weight_t> weights;
  {
    vector<weight_t> vweights;
    const string weightsf = conf["weights"].as<string>();
    Weights::InitFromFile(weightsf, &vweights);
    Weights::InitSparseVector(vweights, &weights);
  }
  string line, file;
  vector<training::CandidateSet> kis;
  cerr << "Loading hypergraphs...\n";
  while(getline(in, line)) {
    istringstream is(line);
    int sent_id;
    kis.resize(kis.size() + 1);
    training::CandidateSet& curkbest = kis.back();
    string kbest_file;
    if (kbest_repo.size()) {
      ostringstream os;
      os << kbest_repo << "/kbest." << sent_id << ".txt.gz";
      kbest_file = os.str();
      if (FileExists(kbest_file))
        curkbest.ReadFromFile(kbest_file);
    }
    is >> file >> sent_id;
    ReadFile rf(file);
    if (kis.size() % 5 == 0) { cerr << '.'; }
    if (kis.size() % 200 == 0) { cerr << " [" << kis.size() << "]\n"; }
    HypergraphIO::ReadFromJSON(rf.stream(), &hg);
    hg.Reweight(weights);
    curkbest.AddKBestCandidates(hg, kbest_size, ds[sent_id]);
    if (kbest_file.size())
      curkbest.WriteToFile(kbest_file);
  }
  cerr << "\nHypergraphs loaded.\n";

  vector<SparseVector<weight_t> > goals(kis.size());  // f(x_i,y+,h+)
  SparseVector<weight_t> fear;  // f(x,y-,h-)
  const GainFunction gain(metric);
  for (unsigned iterp = 1; iterp <= tp; ++iterp) {
    cerr << "CCCP Iteration " << iterp << endl;
    for (unsigned i = 0; i < goals.size(); ++i)
      CostAugmentedSearch(gain, kis[i], weights, goodsign * alpha, &goals[i]);
    for (unsigned iterpp = 1; iterpp <= tpp; ++iterpp) {
      cerr << "  SSD Iteration " << iterpp << endl;
      for (unsigned i = 0; i < goals.size(); ++i) {
        CostAugmentedSearch(gain, kis[i], weights, badsign * alpha, &fear);
        weights -= weights * (eta * reg / goals.size());
        weights += (goals[i] - fear) * eta;
      }
    }
  }
  vector<weight_t> w;
  weights.init_vector(&w);
  Weights::WriteToFile("-", w);
  return 0;
}