1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
|
cimport mteval
cdef SufficientStats as_stats(x, y):
if isinstance(x, SufficientStats):
return x
elif x == 0 and isinstance(y, SufficientStats):
stats = SufficientStats()
stats.stats = new mteval.SufficientStats()
stats.metric = (<SufficientStats> y).metric
return stats
cdef class Candidate:
cdef mteval.const_Candidate* candidate
cdef public float score
property words:
def __get__(self):
return unicode(GetString(self.candidate.ewords).c_str(), encoding='utf8')
property fmap:
def __get__(self):
cdef SparseVector fmap = SparseVector.__new__(SparseVector)
fmap.vector = new FastSparseVector[weight_t](self.candidate.fmap)
return fmap
cdef class SufficientStats:
cdef mteval.SufficientStats* stats
cdef mteval.EvaluationMetric* metric
def __dealloc__(self):
del self.stats
property score:
def __get__(self):
return self.metric.ComputeScore(self.stats[0])
property detail:
def __get__(self):
return str(self.metric.DetailedScore(self.stats[0]).c_str())
def __len__(self):
return self.stats.size()
def __iter__(self):
for i in range(len(self)):
yield self[i]
def __getitem__(self, int index):
if not 0 <= index < len(self):
raise IndexError('sufficient stats vector index out of range')
return self.stats[0][index]
def __iadd__(SufficientStats self, SufficientStats other):
self.stats[0] += other.stats[0]
return self
def __add__(x, y):
cdef SufficientStats sx = as_stats(x, y)
cdef SufficientStats sy = as_stats(y, x)
cdef SufficientStats result = SufficientStats()
result.stats = new mteval.SufficientStats(mteval.add(sx.stats[0], sy.stats[0]))
result.metric = sx.metric
return result
cdef class CandidateSet:
cdef shared_ptr[mteval.SegmentEvaluator]* scorer
cdef mteval.EvaluationMetric* metric
cdef mteval.CandidateSet* cs
def __cinit__(self, SegmentEvaluator evaluator):
self.scorer = new shared_ptr[mteval.SegmentEvaluator](evaluator.scorer[0])
self.metric = evaluator.metric
self.cs = new mteval.CandidateSet()
def __dealloc__(self):
del self.scorer
del self.cs
def __len__(self):
return self.cs.size()
def __getitem__(self,int k):
if not 0 <= k < self.cs.size():
raise IndexError('candidate set index out of range')
cdef Candidate candidate = Candidate()
candidate.candidate = &self.cs[0][k]
candidate.score = self.metric.ComputeScore(self.cs[0][k].eval_feats)
return candidate
def __iter__(self):
cdef unsigned i
for i in range(len(self)):
yield self[i]
def add_kbest(self, Hypergraph hypergraph, unsigned k):
"""cs.add_kbest(Hypergraph hypergraph, int k) -> Extract K-best hypotheses
from the hypergraph and add them to the candidate set."""
self.cs.AddKBestCandidates(hypergraph.hg[0], k, self.scorer.get())
cdef class SegmentEvaluator:
cdef shared_ptr[mteval.SegmentEvaluator]* scorer
cdef mteval.EvaluationMetric* metric
def __dealloc__(self):
del self.scorer
def evaluate(self, sentence):
"""se.evaluate(sentence) -> SufficientStats for the given hypothesis."""
cdef vector[WordID] hyp
cdef SufficientStats sf = SufficientStats()
sf.metric = self.metric
sf.stats = new mteval.SufficientStats()
ConvertSentence(as_str(sentence.strip()), &hyp)
self.scorer.get().Evaluate(hyp, sf.stats)
return sf
def candidate_set(self):
"""se.candidate_set() -> Candidate set using this segment evaluator for scoring."""
return CandidateSet(self)
cdef class Scorer:
cdef string* name
cdef mteval.EvaluationMetric* metric
def __cinit__(self, bytes name=None):
if name:
self.name = new string(name)
self.metric = mteval.MetricInstance(self.name[0])
def __dealloc__(self):
del self.name
def __call__(self, refs):
if isinstance(refs, basestring):
refs = [refs]
cdef vector[vector[WordID]]* refsv = new vector[vector[WordID]]()
cdef vector[WordID]* refv
for ref in refs:
refv = new vector[WordID]()
ConvertSentence(as_str(ref.strip()), refv)
refsv.push_back(refv[0])
del refv
cdef unsigned i
cdef SegmentEvaluator evaluator = SegmentEvaluator()
evaluator.metric = self.metric
evaluator.scorer = new shared_ptr[mteval.SegmentEvaluator](
self.metric.CreateSegmentEvaluator(refsv[0]))
del refsv # in theory should not delete but store in SegmentEvaluator
return evaluator
def __str__(self):
return str(self.name.c_str())
cdef float _compute_score(void* metric_, mteval.SufficientStats* stats):
cdef Metric metric = <Metric> metric_
cdef list ss = []
cdef unsigned i
for i in range(stats.size()):
ss.append(stats[0][i])
return metric.score(ss)
cdef void _compute_sufficient_stats(void* metric_,
string* hyp,
vector[string]* refs,
mteval.SufficientStats* out):
cdef Metric metric = <Metric> metric_
cdef list refs_ = []
cdef unsigned i
for i in range(refs.size()):
refs_.append(str(refs[0][i].c_str()))
cdef list ss = metric.evaluate(str(hyp.c_str()), refs_)
out.fields.resize(len(ss))
for i in range(len(ss)):
out.fields[i] = ss[i]
cdef class Metric:
cdef Scorer scorer
def __cinit__(self):
self.scorer = Scorer()
cdef bytes class_name = self.__class__.__name__
self.scorer.name = new string(class_name)
self.scorer.metric = mteval.PyMetricInstance(self.scorer.name[0],
<void*> self, _compute_sufficient_stats, _compute_score)
def __call__(self, refs):
return self.scorer(refs)
def score(SufficientStats stats):
return 0
def evaluate(self, hyp, refs):
return []
BLEU = Scorer('IBM_BLEU')
TER = Scorer('TER')
CER = Scorer('CER')
|