summaryrefslogtreecommitdiff
path: root/python/pkg/cdec/sa/extractor.py
blob: bb912e16147e3d9e90e07d230616f0b2178c5916 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
from itertools import chain
import os
import cdec.configobj
from cdec.sa.features import EgivenFCoherent, SampleCountF, CountEF,\
        MaxLexEgivenF, MaxLexFgivenE, IsSingletonF, IsSingletonFE
import cdec.sa

# maximum span of a grammar rule in TEST DATA
MAX_INITIAL_SIZE = 15

class GrammarExtractor:
    def __init__(self, config):
        if isinstance(config, str) or isinstance(config, unicode):
            if not os.path.exists(config):
                raise IOError('cannot read configuration from {0}'.format(config))
            config = cdec.configobj.ConfigObj(config, unrepr=True)
        alignment = cdec.sa.Alignment(from_binary=config['a_file'])
        self.factory = cdec.sa.HieroCachingRuleFactory(
                # compiled alignment object (REQUIRED)
                alignment,
                # name of generic nonterminal used by Hiero
                category="[X]",
                # maximum number of contiguous chunks of terminal symbols in RHS of a rule
                max_chunks=config['max_nt']+1,
                # maximum span of a grammar rule in TEST DATA
                max_initial_size=MAX_INITIAL_SIZE,
                # maximum number of symbols (both T and NT) allowed in a rule
                max_length=config['max_len'],
                # maximum number of nonterminals allowed in a rule (set >2 at your own risk)
                max_nonterminals=config['max_nt'],
                # maximum number of contiguous chunks of terminal symbols
                # in target-side RHS of a rule.
                max_target_chunks=config['max_nt']+1,
                # maximum number of target side symbols (both T and NT) allowed in a rule.
                max_target_length=MAX_INITIAL_SIZE,
                # minimum span of a nonterminal in the RHS of a rule in TEST DATA
                min_gap_size=1,
                # filename of file containing precomputed collocations
                precompute_file=config['precompute_file'],
                # maximum frequency rank of patterns used to compute triples (< 20)
                precompute_secondary_rank=config['rank2'],
                # maximum frequency rank of patterns used to compute collocations (< 300)
                precompute_rank=config['rank1'],
                # require extracted rules to have at least one aligned word
                require_aligned_terminal=True,
                # require each contiguous chunk of extracted rules
                # to have at least one aligned word
                require_aligned_chunks=False,
                # maximum span of a grammar rule extracted from TRAINING DATA
                train_max_initial_size=config['max_size'],
                # minimum span of an RHS nonterminal in a rule extracted from TRAINING DATA
                train_min_gap_size=config['min_gap'],
                # True if phrases should be tight, False otherwise (better but slower)
                tight_phrases=True,
                )

        # lexical weighting tables
        tt = cdec.sa.BiLex(from_binary=config['lex_file'])

        self.models = (EgivenFCoherent, SampleCountF, CountEF, 
                MaxLexFgivenE(tt), MaxLexEgivenF(tt), IsSingletonF, IsSingletonFE)

        fsarray = cdec.sa.SuffixArray(from_binary=config['f_sa_file'])
        edarray = cdec.sa.DataArray(from_binary=config['e_file'])

        # lower=faster, higher=better; improvements level off above 200-300 range,
        # -1 = don't sample, use all data (VERY SLOW!)
        sampler = cdec.sa.Sampler(300, fsarray)

        self.factory.configure(fsarray, edarray, sampler)

    def grammar(self, sentence):
        if isinstance(sentence, unicode):
            sentence = sentence.encode('utf8')
        cnet = chain(('<s>',), sentence.split(), ('</s>',))
        cnet = (cdec.sa.sym_fromstring(word, terminal=True) for word in cnet)
        cnet = tuple(((word, None, 1), ) for word in cnet)
        return self.factory.input(cnet, self.models)