summaryrefslogtreecommitdiff
path: root/pro-train/mr_pro_reduce.cc
blob: 491ceb3acc1d969a1be1688fd69e9cd1115f7e9b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
#include <cstdlib>
#include <sstream>
#include <iostream>
#include <fstream>
#include <vector>

#include <boost/program_options.hpp>
#include <boost/program_options/variables_map.hpp>

#include "filelib.h"
#include "weights.h"
#include "sparse_vector.h"
#include "optimize.h"

using namespace std;
namespace po = boost::program_options;

// since this is a ranking model, there should be equal numbers of
// positive and negative examples so the bias should be 0
static const double MAX_BIAS = 1e-10;

void InitCommandLine(int argc, char** argv, po::variables_map* conf) {
  po::options_description opts("Configuration options");
  opts.add_options()
        ("weights,w", po::value<string>(), "Weights from previous iteration (used as initialization and interpolation")
        ("interpolation,p",po::value<double>()->default_value(0.9), "Output weights are p*w + (1-p)*w_prev")
        ("memory_buffers,m",po::value<unsigned>()->default_value(200), "Number of memory buffers (LBFGS)")
        ("sigma_squared,s",po::value<double>()->default_value(1.0), "Sigma squared for Gaussian prior")
        ("testset,t",po::value<string>(), "Optional held-out test set to tune regularizer")
        ("help,h", "Help");
  po::options_description dcmdline_options;
  dcmdline_options.add(opts);
  po::store(parse_command_line(argc, argv, dcmdline_options), *conf);
  if (conf->count("help")) {
    cerr << dcmdline_options << endl;
    exit(1);
  }
}

void ParseSparseVector(string& line, size_t cur, SparseVector<double>* out) {
  SparseVector<double>& x = *out;
  size_t last_start = cur;
  size_t last_comma = string::npos;
  while(cur <= line.size()) {
    if (line[cur] == ' ' || cur == line.size()) {
      if (!(cur > last_start && last_comma != string::npos && cur > last_comma)) {
        cerr << "[ERROR] " << line << endl << "  position = " << cur << endl;
        exit(1);
      }
      const int fid = FD::Convert(line.substr(last_start, last_comma - last_start));
      if (cur < line.size()) line[cur] = 0;
      const double val = strtod(&line[last_comma + 1], NULL);
      x.set_value(fid, val);

      last_comma = string::npos;
      last_start = cur+1;
    } else {
      if (line[cur] == '=')
        last_comma = cur;
    }
    ++cur;
  }
}

void ReadCorpus(istream* pin, vector<pair<bool, SparseVector<double> > >* corpus) {
  istream& in = *pin;
  corpus->clear();
  bool flag = false;
  int lc = 0;
  string line;
  SparseVector<double> x;
  while(getline(in, line)) {
    ++lc;
    if (lc % 1000 == 0) { cerr << '.'; flag = true; }
    if (lc % 40000 == 0) { cerr << " [" << lc << "]\n"; flag = false; }
    if (line.empty()) continue;
    const size_t ks = line.find("\t");
    assert(string::npos != ks);
    assert(ks == 1);
    const bool y = line[0] == '1';
    x.clear();
    ParseSparseVector(line, ks + 1, &x);
    corpus->push_back(make_pair(y, x));
  }
  if (flag) cerr << endl;
}

void GradAdd(const SparseVector<double>& v, const double scale, vector<double>* acc) {
  for (SparseVector<double>::const_iterator it = v.begin();
       it != v.end(); ++it) {
    (*acc)[it->first] += it->second * scale;
  }
}

double TrainingInference(const vector<double>& x,
                         const vector<pair<bool, SparseVector<double> > >& corpus,
                         vector<double>* g = NULL) {
  if (g) fill(g->begin(), g->end(), 0.0);

  double cll = 0;
  for (int i = 0; i < corpus.size(); ++i) {
    const double dotprod = corpus[i].second.dot(x) + x[0]; // x[0] is bias
    double lp_false = dotprod;
    double lp_true = -dotprod;
    if (0 < lp_true) {
      lp_true += log1p(exp(-lp_true));
      lp_false = log1p(exp(lp_false));
    } else {
      lp_true = log1p(exp(lp_true));
      lp_false += log1p(exp(-lp_false));
    }
    lp_true*=-1;
    lp_false*=-1;
    if (corpus[i].first) {  // true label
      cll -= lp_true;
      if (g) {
        // g -= corpus[i].second * exp(lp_false);
        GradAdd(corpus[i].second, -exp(lp_false), g);
        (*g)[0] -= exp(lp_false); // bias
      }
    } else {                  // false label
      cll -= lp_false;
      if (g) {
        // g += corpus[i].second * exp(lp_true);
        GradAdd(corpus[i].second, exp(lp_true), g);
        (*g)[0] += exp(lp_true); // bias
      }
    }
  }
  return cll;
}

int main(int argc, char** argv) {
  po::variables_map conf;
  InitCommandLine(argc, argv, &conf);
  string line;
  vector<pair<bool, SparseVector<double> > > training, testing;
  SparseVector<double> old_weights;
  const double psi = conf["interpolation"].as<double>();
  if (psi < 0.0 || psi > 1.0) { cerr << "Invalid interpolation weight: " << psi << endl; }
  if (conf.count("weights")) {
    Weights w;
    w.InitFromFile(conf["weights"].as<string>());
    w.InitSparseVector(&old_weights);
  }
  ReadCorpus(&cin, &training);
  if (conf.count("testset")) {
    ReadFile rf(conf["testset"].as<string>());
    ReadCorpus(rf.stream(), &testing);
  }

  cerr << "Number of features: " << FD::NumFeats() << endl;
  vector<double> x(FD::NumFeats(), 0.0);  // x[0] is bias
  for (SparseVector<double>::const_iterator it = old_weights.begin();
       it != old_weights.end(); ++it)
    x[it->first] = it->second;
  vector<double> vg(FD::NumFeats(), 0.0);
  bool converged = false;
  LBFGSOptimizer opt(FD::NumFeats(), conf["memory_buffers"].as<unsigned>());
  while(!converged) {
    double cll = TrainingInference(x, training, &vg);
    double ppl = cll / log(2);
    ppl /= training.size();
    ppl = pow(2.0, ppl);
    double tppl = 0.0;

    // evaluate optional held-out test set
    if (testing.size()) {
      tppl = TrainingInference(x, testing) / log(2);
      tppl /= testing.size();
      tppl = pow(2.0, tppl);
    }

    // handle regularizer
#if 1
    const double sigsq = conf["sigma_squared"].as<double>();
    double norm = 0;
    for (int i = 1; i < x.size(); ++i) {
      const double mean_i = 0.0;
      const double param = (x[i] - mean_i);
      norm += param * param;
      vg[i] += param / sigsq;
    } 
    const double reg = norm / (2.0 * sigsq);
#else
    double reg = 0;
#endif
    cll += reg;
    cerr << cll << " (REG=" << reg << ")\tPPL=" << ppl << "\t TEST_PPL=" << tppl << "\t";
    try {
      vector<double> old_x = x;
      do {
        opt.Optimize(cll, vg, &x);
        converged = opt.HasConverged();
      } while (!converged && x == old_x);
    } catch (...) {
      cerr << "Exception caught, assuming convergence is close enough...\n";
      converged = true;
    }
    if (fabs(x[0]) > MAX_BIAS) {
      cerr << "Biased model learned. Are your training instances wrong?\n";
      cerr << "  BIAS: " << x[0] << endl;
    }
  }
  Weights w;
  if (conf.count("weights")) {
    for (int i = 1; i < x.size(); ++i)
      x[i] = (x[i] * psi) + old_weights.get(i) * (1.0 - psi);
  }
  w.InitFromVector(x);
  w.WriteToFile("-");
  return 0;
}