1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
|
#include <sstream>
#include <iostream>
#include <vector>
#include <cassert>
#include <cmath>
#include "config.h"
#include <boost/shared_ptr.hpp>
#include <boost/program_options.hpp>
#include <boost/program_options/variables_map.hpp>
#include "sentence_metadata.h"
#include "scorer.h"
#include "verbose.h"
#include "viterbi.h"
#include "hg.h"
#include "prob.h"
#include "kbest.h"
#include "ff_register.h"
#include "decoder.h"
#include "filelib.h"
#include "fdict.h"
#include "weights.h"
#include "sparse_vector.h"
using namespace std;
using boost::shared_ptr;
namespace po = boost::program_options;
void SanityCheck(const vector<double>& w) {
for (int i = 0; i < w.size(); ++i) {
assert(!isnan(w[i]));
assert(!isinf(w[i]));
}
}
struct FComp {
const vector<double>& w_;
FComp(const vector<double>& w) : w_(w) {}
bool operator()(int a, int b) const {
return fabs(w_[a]) > fabs(w_[b]);
}
};
void ShowLargestFeatures(const vector<double>& w) {
vector<int> fnums(w.size());
for (int i = 0; i < w.size(); ++i)
fnums[i] = i;
vector<int>::iterator mid = fnums.begin();
mid += (w.size() > 10 ? 10 : w.size());
partial_sort(fnums.begin(), mid, fnums.end(), FComp(w));
cerr << "TOP FEATURES:";
for (vector<int>::iterator i = fnums.begin(); i != mid; ++i) {
cerr << ' ' << FD::Convert(*i) << '=' << w[*i];
}
cerr << endl;
}
bool InitCommandLine(int argc, char** argv, po::variables_map* conf) {
po::options_description opts("Configuration options");
opts.add_options()
("input_weights,w",po::value<string>(),"Input feature weights file")
("source,i",po::value<string>(),"Source file for development set")
("reference,r",po::value<vector<string> >(), "[REQD] Reference translation(s) (tokenized text file)")
("mt_metric,m",po::value<string>()->default_value("ter"), "Scoring metric (ibm_bleu, nist_bleu, koehn_bleu, ter, combi)")
("max_step_size,C", po::value<double>()->default_value(0.0001), "maximum step size (C)")
("mt_metric_scale,s", po::value<double>()->default_value(1.0), "Amount to scale MT loss function by")
("decoder_config,c",po::value<string>(),"Decoder configuration file");
po::options_description clo("Command line options");
clo.add_options()
("config", po::value<string>(), "Configuration file")
("help,h", "Print this help message and exit");
po::options_description dconfig_options, dcmdline_options;
dconfig_options.add(opts);
dcmdline_options.add(opts).add(clo);
po::store(parse_command_line(argc, argv, dcmdline_options), *conf);
if (conf->count("config")) {
ifstream config((*conf)["config"].as<string>().c_str());
po::store(po::parse_config_file(config, dconfig_options), *conf);
}
po::notify(*conf);
if (conf->count("help") || !conf->count("input_weights") || !conf->count("source") || !conf->count("decoder_config") || !conf->count("reference")) {
cerr << dcmdline_options << endl;
return false;
}
return true;
}
static const double kMINUS_EPSILON = -1e-6;
struct HypothesisInfo {
SparseVector<double> features;
double mt_metric;
};
struct GoodBadOracle {
shared_ptr<HypothesisInfo> good;
shared_ptr<HypothesisInfo> bad;
};
struct TrainingObserver : public DecoderObserver {
TrainingObserver(const DocScorer& d, vector<GoodBadOracle>* o) : ds(d), oracles(*o) {}
const DocScorer& ds;
vector<GoodBadOracle>& oracles;
shared_ptr<HypothesisInfo> cur_best;
const HypothesisInfo& GetCurrentBestHypothesis() const {
return *cur_best;
}
virtual void NotifyTranslationForest(const SentenceMetadata& smeta, Hypergraph* hg) {
UpdateOracles(smeta.GetSentenceID(), *hg);
}
shared_ptr<HypothesisInfo> MakeHypothesisInfo(const SparseVector<double>& feats, const double score) {
shared_ptr<HypothesisInfo> h(new HypothesisInfo);
h->features = feats;
h->mt_metric = score;
return h;
}
void UpdateOracles(int sent_id, const Hypergraph& forest) {
int kbest_size = 330;
shared_ptr<HypothesisInfo>& cur_good = oracles[sent_id].good;
shared_ptr<HypothesisInfo>& cur_bad = oracles[sent_id].bad;
cur_bad.reset(); // TODO get rid of??
KBest::KBestDerivations<vector<WordID>, ESentenceTraversal> kbest(forest, kbest_size);
for (int i = 0; i < kbest_size; ++i) {
const KBest::KBestDerivations<vector<WordID>, ESentenceTraversal>::Derivation* d =
kbest.LazyKthBest(forest.nodes_.size() - 1, i);
if (!d) break;
float sentscore = ds[sent_id]->ScoreCandidate(d->yield)->ComputeScore();
// cerr << TD::GetString(d->yield) << " ||| " << d->score << " ||| " << sentscore << endl;
if (i == 0)
cur_best = MakeHypothesisInfo(d->feature_values, sentscore);
if (!cur_good || sentscore < cur_good->mt_metric)
cur_good = MakeHypothesisInfo(d->feature_values, sentscore);
if (!cur_bad || sentscore > cur_bad->mt_metric)
cur_bad = MakeHypothesisInfo(d->feature_values, sentscore);
}
cerr << "GOOD: " << cur_good->mt_metric << endl;
cerr << " BAD: " << cur_bad->mt_metric << endl;
cerr << " #1: " << cur_best->mt_metric << endl;
}
};
void ReadTrainingCorpus(const string& fname, vector<string>* c) {
ReadFile rf(fname);
istream& in = *rf.stream();
string line;
while(in) {
getline(in, line);
if (!in) break;
c->push_back(line);
}
}
bool ApproxEqual(double a, double b) {
if (a == b) return true;
return (fabs(a-b)/fabs(b)) < 0.000001;
}
int main(int argc, char** argv) {
register_feature_functions();
//SetSilent(true); // turn off verbose decoder output
po::variables_map conf;
if (!InitCommandLine(argc, argv, &conf)) return 1;
vector<string> corpus;
ReadTrainingCorpus(conf["source"].as<string>(), &corpus);
const string metric_name = conf["mt_metric"].as<string>();
ScoreType type = ScoreTypeFromString(metric_name);
DocScorer ds(type, conf["reference"].as<vector<string> >(), "");
cerr << "Loaded " << ds.size() << " references for scoring with " << metric_name << endl;
if (ds.size() != corpus.size()) {
cerr << "Mismatched number of references (" << ds.size() << ") and sources (" << corpus.size() << ")\n";
return 1;
}
// load initial weights
Weights weights;
weights.InitFromFile(conf["input_weights"].as<string>());
SparseVector<double> lambdas;
weights.InitSparseVector(&lambdas);
// freeze feature set (should be optional?)
const bool freeze_feature_set = true;
if (freeze_feature_set) FD::Freeze();
ReadFile ini_rf(conf["decoder_config"].as<string>());
Decoder decoder(ini_rf.stream());
const double max_step_size = conf["max_step_size"].as<double>();
const double mt_metric_scale = conf["mt_metric_scale"].as<double>();
assert(corpus.size() > 0);
vector<GoodBadOracle> oracles(corpus.size());
TrainingObserver observer(ds, &oracles);
int cur_sent = 0;
bool converged = false;
vector<double> dense_weights;
while (!converged) {
dense_weights.clear();
weights.InitFromVector(lambdas);
weights.InitVector(&dense_weights);
decoder.SetWeights(dense_weights);
if (corpus.size() == cur_sent) cur_sent = 0;
decoder.SetId(cur_sent);
decoder.Decode(corpus[cur_sent], &observer); // update oracles
const HypothesisInfo& cur_hyp = observer.GetCurrentBestHypothesis();
const HypothesisInfo& cur_good = *oracles[cur_sent].good;
const HypothesisInfo& cur_bad = *oracles[cur_sent].bad;
if (!ApproxEqual(cur_hyp.mt_metric, cur_good.mt_metric)) {
const double loss = cur_bad.features.dot(dense_weights) - cur_good.features.dot(dense_weights) +
mt_metric_scale * (cur_good.mt_metric - cur_bad.mt_metric);
cerr << "LOSS: " << loss << endl;
if (loss > 0.0) {
SparseVector<double> diff = cur_good.features;
diff -= cur_bad.features;
double step_size = loss / diff.l2norm_sq();
//cerr << loss << " " << step_size << " " << diff << endl;
if (step_size > max_step_size) step_size = max_step_size;
lambdas += (cur_good.features * step_size);
lambdas -= (cur_bad.features * step_size);
//cerr << "L: " << lambdas << endl;
}
}
++cur_sent;
static int cc = 0; ++cc; if (cc==250) converged = true;
}
weights.WriteToFile("-");
return 0;
}
|