1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
|
#ifndef UTIL_SORTED_UNIFORM__
#define UTIL_SORTED_UNIFORM__
#include <algorithm>
#include <cstddef>
#include <assert.h>
#include <inttypes.h>
namespace util {
template <class T> class IdentityAccessor {
public:
typedef T Key;
T operator()(const uint64_t *in) const { return *in; }
};
struct Pivot64 {
static inline std::size_t Calc(uint64_t off, uint64_t range, std::size_t width) {
std::size_t ret = static_cast<std::size_t>(static_cast<float>(off) / static_cast<float>(range) * static_cast<float>(width));
// Cap for floating point rounding
return (ret < width) ? ret : width - 1;
}
};
// Use when off * width is <2^64. This is guaranteed when each of them is actually a 32-bit value.
struct Pivot32 {
static inline std::size_t Calc(uint64_t off, uint64_t range, uint64_t width) {
return static_cast<std::size_t>((off * width) / (range + 1));
}
};
// Usage: PivotSelect<sizeof(DataType)>::T
template <unsigned> struct PivotSelect;
template <> struct PivotSelect<8> { typedef Pivot64 T; };
template <> struct PivotSelect<4> { typedef Pivot32 T; };
template <> struct PivotSelect<2> { typedef Pivot32 T; };
/* Binary search. */
template <class Iterator, class Accessor> bool BinaryFind(
const Accessor &accessor,
Iterator begin,
Iterator end,
const typename Accessor::Key key, Iterator &out) {
while (end > begin) {
Iterator pivot(begin + (end - begin) / 2);
typename Accessor::Key mid(accessor(pivot));
if (mid < key) {
begin = pivot + 1;
} else if (mid > key) {
end = pivot;
} else {
out = pivot;
return true;
}
}
return false;
}
// Search the range [before_it + 1, after_it - 1] for key.
// Preconditions:
// before_v <= key <= after_v
// before_v <= all values in the range [before_it + 1, after_it - 1] <= after_v
// range is sorted.
template <class Iterator, class Accessor, class Pivot> bool BoundedSortedUniformFind(
const Accessor &accessor,
Iterator before_it, typename Accessor::Key before_v,
Iterator after_it, typename Accessor::Key after_v,
const typename Accessor::Key key, Iterator &out) {
while (after_it - before_it > 1) {
Iterator pivot(before_it + (1 + Pivot::Calc(key - before_v, after_v - before_v, after_it - before_it - 1)));
typename Accessor::Key mid(accessor(pivot));
if (mid < key) {
before_it = pivot;
before_v = mid;
} else if (mid > key) {
after_it = pivot;
after_v = mid;
} else {
out = pivot;
return true;
}
}
return false;
}
template <class Iterator, class Accessor, class Pivot> bool SortedUniformFind(const Accessor &accessor, Iterator begin, Iterator end, const typename Accessor::Key key, Iterator &out) {
if (begin == end) return false;
typename Accessor::Key below(accessor(begin));
if (key <= below) {
if (key == below) { out = begin; return true; }
return false;
}
// Make the range [begin, end].
--end;
typename Accessor::Key above(accessor(end));
if (key >= above) {
if (key == above) { out = end; return true; }
return false;
}
return BoundedSortedUniformFind<Iterator, Accessor, Pivot>(accessor, begin, below, end, above, key, out);
}
// To use this template, you need to define a Pivot function to match Key.
template <class PackingT> class SortedUniformMap {
public:
typedef PackingT Packing;
typedef typename Packing::ConstIterator ConstIterator;
typedef typename Packing::MutableIterator MutableIterator;
struct Accessor {
public:
typedef typename Packing::Key Key;
const Key &operator()(const ConstIterator &i) const { return i->GetKey(); }
Key &operator()(const MutableIterator &i) const { return i->GetKey(); }
};
// Offer consistent API with probing hash.
static std::size_t Size(std::size_t entries, float /*ignore*/ = 0.0) {
return sizeof(uint64_t) + entries * Packing::kBytes;
}
SortedUniformMap()
#ifdef DEBUG
: initialized_(false), loaded_(false)
#endif
{}
SortedUniformMap(void *start, std::size_t /*allocated*/) :
begin_(Packing::FromVoid(reinterpret_cast<uint64_t*>(start) + 1)),
end_(begin_), size_ptr_(reinterpret_cast<uint64_t*>(start))
#ifdef DEBUG
, initialized_(true), loaded_(false)
#endif
{}
void LoadedBinary() {
#ifdef DEBUG
assert(initialized_);
assert(!loaded_);
loaded_ = true;
#endif
// Restore the size.
end_ = begin_ + *size_ptr_;
}
// Caller responsible for not exceeding specified size. Do not call after FinishedInserting.
template <class T> void Insert(const T &t) {
#ifdef DEBUG
assert(initialized_);
assert(!loaded_);
#endif
*end_ = t;
++end_;
}
void FinishedInserting() {
#ifdef DEBUG
assert(initialized_);
assert(!loaded_);
loaded_ = true;
#endif
std::sort(begin_, end_);
*size_ptr_ = (end_ - begin_);
}
// Don't use this to change the key.
template <class Key> bool UnsafeMutableFind(const Key key, MutableIterator &out) {
#ifdef DEBUG
assert(initialized_);
assert(loaded_);
#endif
return SortedUniformFind<MutableIterator, Accessor, Pivot64>(begin_, end_, key, out);
}
// Do not call before FinishedInserting.
template <class Key> bool Find(const Key key, ConstIterator &out) const {
#ifdef DEBUG
assert(initialized_);
assert(loaded_);
#endif
return SortedUniformFind<ConstIterator, Accessor, Pivot64>(Accessor(), ConstIterator(begin_), ConstIterator(end_), key, out);
}
ConstIterator begin() const { return begin_; }
ConstIterator end() const { return end_; }
private:
typename Packing::MutableIterator begin_, end_;
uint64_t *size_ptr_;
#ifdef DEBUG
bool initialized_;
bool loaded_;
#endif
};
} // namespace util
#endif // UTIL_SORTED_UNIFORM__
|