summaryrefslogtreecommitdiff
path: root/klm/lm/search_trie.hh
blob: 5155ca020912cd21b511a7edee6f62c2c52684c7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
#ifndef LM_SEARCH_TRIE__
#define LM_SEARCH_TRIE__

#include "lm/config.hh"
#include "lm/model_type.hh"
#include "lm/return.hh"
#include "lm/trie.hh"
#include "lm/weights.hh"

#include "util/file.hh"
#include "util/file_piece.hh"

#include <vector>

#include <assert.h>

namespace lm {
namespace ngram {
struct Backing;
class SortedVocabulary;
namespace trie {

template <class Quant, class Bhiksha> class TrieSearch;
class SortedFiles;
template <class Quant, class Bhiksha> void BuildTrie(SortedFiles &files, std::vector<uint64_t> &counts, const Config &config, TrieSearch<Quant, Bhiksha> &out, Quant &quant, const SortedVocabulary &vocab, Backing &backing);

template <class Quant, class Bhiksha> class TrieSearch {
  public:
    typedef NodeRange Node;

    typedef ::lm::ngram::trie::Unigram Unigram;
    Unigram unigram;

    typedef trie::BitPackedMiddle<typename Quant::Middle, Bhiksha> Middle;

    typedef trie::BitPackedLongest<typename Quant::Longest> Longest;
    Longest longest;

    static const ModelType kModelType = static_cast<ModelType>(TRIE_SORTED + Quant::kModelTypeAdd + Bhiksha::kModelTypeAdd);

    static const unsigned int kVersion = 1;

    static void UpdateConfigFromBinary(int fd, const std::vector<uint64_t> &counts, Config &config) {
      Quant::UpdateConfigFromBinary(fd, counts, config);
      util::AdvanceOrThrow(fd, Quant::Size(counts.size(), config) + Unigram::Size(counts[0]));
      Bhiksha::UpdateConfigFromBinary(fd, config);
    }

    static std::size_t Size(const std::vector<uint64_t> &counts, const Config &config) {
      std::size_t ret = Quant::Size(counts.size(), config) + Unigram::Size(counts[0]);
      for (unsigned char i = 1; i < counts.size() - 1; ++i) {
        ret += Middle::Size(Quant::MiddleBits(config), counts[i], counts[0], counts[i+1], config);
      }
      return ret + Longest::Size(Quant::LongestBits(config), counts.back(), counts[0]);
    }

    TrieSearch() : middle_begin_(NULL), middle_end_(NULL) {}

    ~TrieSearch() { FreeMiddles(); }

    uint8_t *SetupMemory(uint8_t *start, const std::vector<uint64_t> &counts, const Config &config);

    void LoadedBinary();

    typedef const Middle *MiddleIter;

    const Middle *MiddleBegin() const { return middle_begin_; }
    const Middle *MiddleEnd() const { return middle_end_; }

    void InitializeFromARPA(const char *file, util::FilePiece &f, std::vector<uint64_t> &counts, const Config &config, SortedVocabulary &vocab, Backing &backing);

    void LookupUnigram(WordIndex word, float &backoff, Node &node, FullScoreReturn &ret) const {
      unigram.Find(word, ret.prob, backoff, node);
      ret.independent_left = (node.begin == node.end);
      ret.extend_left = static_cast<uint64_t>(word);
    }

    bool LookupMiddle(const Middle &mid, WordIndex word, float &backoff, Node &node, FullScoreReturn &ret) const {
      if (!mid.Find(word, ret.prob, backoff, node, ret.extend_left)) return false;
      ret.independent_left = (node.begin == node.end);
      return true;
    }

    bool LookupMiddleNoProb(const Middle &mid, WordIndex word, float &backoff, Node &node) const {
      return mid.FindNoProb(word, backoff, node);
    }

    bool LookupLongest(WordIndex word, float &prob, const Node &node) const {
      return longest.Find(word, prob, node);
    }

    bool FastMakeNode(const WordIndex *begin, const WordIndex *end, Node &node) const {
      // TODO: don't decode backoff.
      assert(begin != end);
      FullScoreReturn ignored;
      float ignored_backoff;
      LookupUnigram(*begin, ignored_backoff, node, ignored);
      for (const WordIndex *i = begin + 1; i < end; ++i) {
        if (!LookupMiddleNoProb(middle_begin_[i - begin - 1], *i, ignored_backoff, node)) return false;
      }
      return true;
    }

    Node Unpack(uint64_t extend_pointer, unsigned char extend_length, float &prob) const {
      if (extend_length == 1) {
        float ignored;
        Node ret;
        unigram.Find(static_cast<WordIndex>(extend_pointer), prob, ignored, ret);
        return ret;
      }
      return middle_begin_[extend_length - 2].ReadEntry(extend_pointer, prob);
    }

  private:
    friend void BuildTrie<Quant, Bhiksha>(SortedFiles &files, std::vector<uint64_t> &counts, const Config &config, TrieSearch<Quant, Bhiksha> &out, Quant &quant, const SortedVocabulary &vocab, Backing &backing);

    // Middles are managed manually so we can delay construction and they don't have to be copyable.  
    void FreeMiddles() {
      for (const Middle *i = middle_begin_; i != middle_end_; ++i) {
        i->~Middle();
      }
      free(middle_begin_);
    }

    Middle *middle_begin_, *middle_end_;
    Quant quant_;
};

} // namespace trie
} // namespace ngram
} // namespace lm

#endif // LM_SEARCH_TRIE__