1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
|
#include "lm/ngram.hh"
#include "lm/exception.hh"
#include "util/file_piece.hh"
#include "util/joint_sort.hh"
#include "util/murmur_hash.hh"
#include "util/probing_hash_table.hh"
#include <algorithm>
#include <functional>
#include <numeric>
#include <limits>
#include <string>
#include <cmath>
#include <fcntl.h>
#include <errno.h>
#include <stdlib.h>
#include <sys/mman.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
namespace lm {
namespace ngram {
size_t hash_value(const State &state) {
return util::MurmurHashNative(state.history_, sizeof(WordIndex) * state.valid_length_);
}
namespace detail {
uint64_t HashForVocab(const char *str, std::size_t len) {
// This proved faster than Boost's hash in speed trials: total load time Murmur 67090000, Boost 72210000
// Chose to use 64A instead of native so binary format will be portable across 64 and 32 bit.
return util::MurmurHash64A(str, len, 0);
}
void Prob::SetBackoff(float to) {
UTIL_THROW(FormatLoadException, "Attempt to set backoff " << to << " for the highest order n-gram");
}
// Normally static initialization is a bad idea but MurmurHash is pure arithmetic, so this is ok.
const uint64_t kUnknownHash = HashForVocab("<unk>", 5);
// Sadly some LMs have <UNK>.
const uint64_t kUnknownCapHash = HashForVocab("<UNK>", 5);
} // namespace detail
SortedVocabulary::SortedVocabulary() : begin_(NULL), end_(NULL) {}
std::size_t SortedVocabulary::Size(std::size_t entries, float ignored) {
// Lead with the number of entries.
return sizeof(uint64_t) + sizeof(Entry) * entries;
}
void SortedVocabulary::Init(void *start, std::size_t allocated, std::size_t entries) {
assert(allocated >= Size(entries));
// Leave space for number of entries.
begin_ = reinterpret_cast<Entry*>(reinterpret_cast<uint64_t*>(start) + 1);
end_ = begin_;
saw_unk_ = false;
}
WordIndex SortedVocabulary::Insert(const StringPiece &str) {
uint64_t hashed = detail::HashForVocab(str);
if (hashed == detail::kUnknownHash || hashed == detail::kUnknownCapHash) {
saw_unk_ = true;
return 0;
}
end_->key = hashed;
++end_;
// This is 1 + the offset where it was inserted to make room for unk.
return end_ - begin_;
}
bool SortedVocabulary::FinishedLoading(detail::ProbBackoff *reorder_vocab) {
util::JointSort(begin_, end_, reorder_vocab + 1);
SetSpecial(Index("<s>"), Index("</s>"), 0, end_ - begin_ + 1);
// Save size.
*(reinterpret_cast<uint64_t*>(begin_) - 1) = end_ - begin_;
return saw_unk_;
}
void SortedVocabulary::LoadedBinary() {
end_ = begin_ + *(reinterpret_cast<const uint64_t*>(begin_) - 1);
SetSpecial(Index("<s>"), Index("</s>"), 0, end_ - begin_ + 1);
}
namespace detail {
template <class Search> MapVocabulary<Search>::MapVocabulary() {}
template <class Search> void MapVocabulary<Search>::Init(void *start, std::size_t allocated, std::size_t entries) {
lookup_ = Lookup(start, allocated);
available_ = 1;
// Later if available_ != expected_available_ then we can throw UnknownMissingException.
saw_unk_ = false;
}
template <class Search> WordIndex MapVocabulary<Search>::Insert(const StringPiece &str) {
uint64_t hashed = HashForVocab(str);
// Prevent unknown from going into the table.
if (hashed == kUnknownHash || hashed == kUnknownCapHash) {
saw_unk_ = true;
return 0;
} else {
lookup_.Insert(Lookup::Packing::Make(hashed, available_));
return available_++;
}
}
template <class Search> bool MapVocabulary<Search>::FinishedLoading(ProbBackoff *reorder_vocab) {
lookup_.FinishedInserting();
SetSpecial(Index("<s>"), Index("</s>"), 0, available_);
return saw_unk_;
}
template <class Search> void MapVocabulary<Search>::LoadedBinary() {
lookup_.LoadedBinary();
SetSpecial(Index("<s>"), Index("</s>"), 0, available_);
}
/* All of the entropy is in low order bits and boost::hash does poorly with
* these. Odd numbers near 2^64 chosen by mashing on the keyboard. There is a
* stable point: 0. But 0 is <unk> which won't be queried here anyway.
*/
inline uint64_t CombineWordHash(uint64_t current, const WordIndex next) {
uint64_t ret = (current * 8978948897894561157ULL) ^ (static_cast<uint64_t>(next) * 17894857484156487943ULL);
return ret;
}
uint64_t ChainedWordHash(const WordIndex *word, const WordIndex *word_end) {
if (word == word_end) return 0;
uint64_t current = static_cast<uint64_t>(*word);
for (++word; word != word_end; ++word) {
current = CombineWordHash(current, *word);
}
return current;
}
bool IsEntirelyWhiteSpace(const StringPiece &line) {
for (size_t i = 0; i < static_cast<size_t>(line.size()); ++i) {
if (!isspace(line.data()[i])) return false;
}
return true;
}
void ReadARPACounts(util::FilePiece &in, std::vector<size_t> &number) {
number.clear();
StringPiece line;
if (!IsEntirelyWhiteSpace(line = in.ReadLine())) UTIL_THROW(FormatLoadException, "First line was \"" << line << "\" not blank");
if ((line = in.ReadLine()) != "\\data\\") UTIL_THROW(FormatLoadException, "second line was \"" << line << "\" not \\data\\.");
while (!IsEntirelyWhiteSpace(line = in.ReadLine())) {
if (line.size() < 6 || strncmp(line.data(), "ngram ", 6)) UTIL_THROW(FormatLoadException, "count line \"" << line << "\"doesn't begin with \"ngram \"");
// So strtol doesn't go off the end of line.
std::string remaining(line.data() + 6, line.size() - 6);
char *end_ptr;
unsigned long int length = std::strtol(remaining.c_str(), &end_ptr, 10);
if ((end_ptr == remaining.c_str()) || (length - 1 != number.size())) UTIL_THROW(FormatLoadException, "ngram count lengths should be consecutive starting with 1: " << line);
if (*end_ptr != '=') UTIL_THROW(FormatLoadException, "Expected = immediately following the first number in the count line " << line);
++end_ptr;
const char *start = end_ptr;
long int count = std::strtol(start, &end_ptr, 10);
if (count < 0) UTIL_THROW(FormatLoadException, "Negative n-gram count " << count);
if (start == end_ptr) UTIL_THROW(FormatLoadException, "Couldn't parse n-gram count from " << line);
number.push_back(count);
}
}
void ReadNGramHeader(util::FilePiece &in, unsigned int length) {
StringPiece line;
while (IsEntirelyWhiteSpace(line = in.ReadLine())) {}
std::stringstream expected;
expected << '\\' << length << "-grams:";
if (line != expected.str()) UTIL_THROW(FormatLoadException, "Was expecting n-gram header " << expected.str() << " but got " << line << " instead.");
}
// Special unigram reader because unigram's data structure is different and because we're inserting vocab words.
template <class Voc> void Read1Grams(util::FilePiece &f, const size_t count, Voc &vocab, ProbBackoff *unigrams) {
ReadNGramHeader(f, 1);
for (size_t i = 0; i < count; ++i) {
try {
float prob = f.ReadFloat();
if (f.get() != '\t') UTIL_THROW(FormatLoadException, "Expected tab after probability");
ProbBackoff &value = unigrams[vocab.Insert(f.ReadDelimited())];
value.prob = prob;
switch (f.get()) {
case '\t':
value.SetBackoff(f.ReadFloat());
if ((f.get() != '\n')) UTIL_THROW(FormatLoadException, "Expected newline after backoff");
break;
case '\n':
value.ZeroBackoff();
break;
default:
UTIL_THROW(FormatLoadException, "Expected tab or newline after unigram");
}
} catch(util::Exception &e) {
e << " in the " << i << "th 1-gram at byte " << f.Offset();
throw;
}
}
if (f.ReadLine().size()) UTIL_THROW(FormatLoadException, "Expected blank line after unigrams at byte " << f.Offset());
}
template <class Voc, class Store> void ReadNGrams(util::FilePiece &f, const unsigned int n, const size_t count, const Voc &vocab, Store &store) {
ReadNGramHeader(f, n);
// vocab ids of words in reverse order
WordIndex vocab_ids[n];
typename Store::Packing::Value value;
for (size_t i = 0; i < count; ++i) {
try {
value.prob = f.ReadFloat();
for (WordIndex *vocab_out = &vocab_ids[n-1]; vocab_out >= vocab_ids; --vocab_out) {
*vocab_out = vocab.Index(f.ReadDelimited());
}
uint64_t key = ChainedWordHash(vocab_ids, vocab_ids + n);
switch (f.get()) {
case '\t':
value.SetBackoff(f.ReadFloat());
if ((f.get() != '\n')) UTIL_THROW(FormatLoadException, "Expected newline after backoff");
break;
case '\n':
value.ZeroBackoff();
break;
default:
UTIL_THROW(FormatLoadException, "Expected tab or newline after n-gram");
}
store.Insert(Store::Packing::Make(key, value));
} catch(util::Exception &e) {
e << " in the " << i << "th " << n << "-gram at byte " << f.Offset();
throw;
}
}
if (f.ReadLine().size()) UTIL_THROW(FormatLoadException, "Expected blank line after " << n << "-grams at byte " << f.Offset());
store.FinishedInserting();
}
template <class Search, class VocabularyT> size_t GenericModel<Search, VocabularyT>::Size(const std::vector<size_t> &counts, const Config &config) {
if (counts.size() > kMaxOrder) UTIL_THROW(FormatLoadException, "This model has order " << counts.size() << ". Edit ngram.hh's kMaxOrder to at least this value and recompile.");
if (counts.size() < 2) UTIL_THROW(FormatLoadException, "This ngram implementation assumes at least a bigram model.");
size_t memory_size = VocabularyT::Size(counts[0], config.probing_multiplier);
memory_size += sizeof(ProbBackoff) * (counts[0] + 1); // +1 for hallucinate <unk>
for (unsigned char n = 2; n < counts.size(); ++n) {
memory_size += Middle::Size(counts[n - 1], config.probing_multiplier);
}
memory_size += Longest::Size(counts.back(), config.probing_multiplier);
return memory_size;
}
template <class Search, class VocabularyT> void GenericModel<Search, VocabularyT>::SetupMemory(char *base, const std::vector<size_t> &counts, const Config &config) {
char *start = base;
size_t allocated = VocabularyT::Size(counts[0], config.probing_multiplier);
vocab_.Init(start, allocated, counts[0]);
start += allocated;
unigram_ = reinterpret_cast<ProbBackoff*>(start);
start += sizeof(ProbBackoff) * (counts[0] + 1);
for (unsigned int n = 2; n < counts.size(); ++n) {
allocated = Middle::Size(counts[n - 1], config.probing_multiplier);
middle_.push_back(Middle(start, allocated));
start += allocated;
}
allocated = Longest::Size(counts.back(), config.probing_multiplier);
longest_ = Longest(start, allocated);
start += allocated;
if (static_cast<std::size_t>(start - base) != Size(counts, config)) UTIL_THROW(FormatLoadException, "The data structures took " << (start - base) << " but Size says they should take " << Size(counts, config));
}
const char kMagicBytes[] = "mmap lm http://kheafield.com/code format version 0\n\0";
struct BinaryFileHeader {
char magic[sizeof(kMagicBytes)];
float zero_f, one_f, minus_half_f;
WordIndex one_word_index, max_word_index;
uint64_t one_uint64;
void SetToReference() {
std::memcpy(magic, kMagicBytes, sizeof(magic));
zero_f = 0.0; one_f = 1.0; minus_half_f = -0.5;
one_word_index = 1;
max_word_index = std::numeric_limits<WordIndex>::max();
one_uint64 = 1;
}
};
bool IsBinaryFormat(int fd, off_t size) {
if (size == util::kBadSize || (size <= static_cast<off_t>(sizeof(BinaryFileHeader)))) return false;
// Try reading the header.
util::scoped_mmap memory(mmap(NULL, sizeof(BinaryFileHeader), PROT_READ, MAP_FILE | MAP_PRIVATE, fd, 0), sizeof(BinaryFileHeader));
if (memory.get() == MAP_FAILED) return false;
BinaryFileHeader reference_header = BinaryFileHeader();
reference_header.SetToReference();
if (!memcmp(memory.get(), &reference_header, sizeof(BinaryFileHeader))) return true;
if (!memcmp(memory.get(), "mmap lm ", 8)) UTIL_THROW(FormatLoadException, "File looks like it should be loaded with mmap, but the test values don't match. Was it built on a different machine or with a different compiler?");
return false;
}
std::size_t Align8(std::size_t in) {
std::size_t off = in % 8;
if (!off) return in;
return in + 8 - off;
}
std::size_t TotalHeaderSize(unsigned int order) {
return Align8(sizeof(BinaryFileHeader) + 1 /* order */ + sizeof(uint64_t) * order /* counts */ + sizeof(float) /* probing multiplier */ + 1 /* search_tag */);
}
void ReadBinaryHeader(const void *from, off_t size, std::vector<size_t> &out, float &probing_multiplier, unsigned char &search_tag) {
const char *from_char = reinterpret_cast<const char*>(from);
if (size < static_cast<off_t>(1 + sizeof(BinaryFileHeader))) UTIL_THROW(FormatLoadException, "File too short to have count information.");
// Skip over the BinaryFileHeader which was read by IsBinaryFormat.
from_char += sizeof(BinaryFileHeader);
unsigned char order = *reinterpret_cast<const unsigned char*>(from_char);
if (size < static_cast<off_t>(TotalHeaderSize(order))) UTIL_THROW(FormatLoadException, "File too short to have full header.");
out.resize(static_cast<std::size_t>(order));
const uint64_t *counts = reinterpret_cast<const uint64_t*>(from_char + 1);
for (std::size_t i = 0; i < out.size(); ++i) {
out[i] = static_cast<std::size_t>(counts[i]);
}
const float *probing_ptr = reinterpret_cast<const float*>(counts + out.size());
probing_multiplier = *probing_ptr;
search_tag = *reinterpret_cast<const char*>(probing_ptr + 1);
}
void WriteBinaryHeader(void *to, const std::vector<size_t> &from, float probing_multiplier, char search_tag) {
BinaryFileHeader header = BinaryFileHeader();
header.SetToReference();
memcpy(to, &header, sizeof(BinaryFileHeader));
char *out = reinterpret_cast<char*>(to) + sizeof(BinaryFileHeader);
*reinterpret_cast<unsigned char*>(out) = static_cast<unsigned char>(from.size());
uint64_t *counts = reinterpret_cast<uint64_t*>(out + 1);
for (std::size_t i = 0; i < from.size(); ++i) {
counts[i] = from[i];
}
float *probing_ptr = reinterpret_cast<float*>(counts + from.size());
*probing_ptr = probing_multiplier;
*reinterpret_cast<char*>(probing_ptr + 1) = search_tag;
}
template <class Search, class VocabularyT> GenericModel<Search, VocabularyT>::GenericModel(const char *file, Config config) : mapped_file_(util::OpenReadOrThrow(file)) {
const off_t file_size = util::SizeFile(mapped_file_.get());
std::vector<size_t> counts;
if (IsBinaryFormat(mapped_file_.get(), file_size)) {
memory_.reset(util::MapForRead(file_size, config.prefault, mapped_file_.get()), file_size);
unsigned char search_tag;
ReadBinaryHeader(memory_.begin(), file_size, counts, config.probing_multiplier, search_tag);
if (config.probing_multiplier < 1.0) UTIL_THROW(FormatLoadException, "Binary format claims to have a probing multiplier of " << config.probing_multiplier << " which is < 1.0.");
if (search_tag != Search::kBinaryTag) UTIL_THROW(FormatLoadException, "The binary file has a different search strategy than the one requested.");
size_t memory_size = Size(counts, config);
char *start = reinterpret_cast<char*>(memory_.get()) + TotalHeaderSize(counts.size());
if (memory_size != static_cast<size_t>(memory_.end() - start)) UTIL_THROW(FormatLoadException, "The mmap file " << file << " has size " << file_size << " but " << (memory_size + TotalHeaderSize(counts.size())) << " was expected based on the number of counts and configuration.");
SetupMemory(start, counts, config);
vocab_.LoadedBinary();
for (typename std::vector<Middle>::iterator i = middle_.begin(); i != middle_.end(); ++i) {
i->LoadedBinary();
}
longest_.LoadedBinary();
} else {
if (config.probing_multiplier <= 1.0) UTIL_THROW(FormatLoadException, "probing multiplier must be > 1.0");
util::FilePiece f(file, mapped_file_.release(), config.messages);
ReadARPACounts(f, counts);
size_t memory_size = Size(counts, config);
char *start;
if (config.write_mmap) {
// Write out an mmap file.
util::MapZeroedWrite(config.write_mmap, TotalHeaderSize(counts.size()) + memory_size, mapped_file_, memory_);
WriteBinaryHeader(memory_.get(), counts, config.probing_multiplier, Search::kBinaryTag);
start = reinterpret_cast<char*>(memory_.get()) + TotalHeaderSize(counts.size());
} else {
memory_.reset(util::MapAnonymous(memory_size), memory_size);
start = reinterpret_cast<char*>(memory_.get());
}
SetupMemory(start, counts, config);
try {
LoadFromARPA(f, counts, config);
} catch (FormatLoadException &e) {
e << " in file " << file;
throw;
}
}
// g++ prints warnings unless these are fully initialized.
State begin_sentence = State();
begin_sentence.valid_length_ = 1;
begin_sentence.history_[0] = vocab_.BeginSentence();
begin_sentence.backoff_[0] = unigram_[begin_sentence.history_[0]].backoff;
State null_context = State();
null_context.valid_length_ = 0;
P::Init(begin_sentence, null_context, vocab_, counts.size());
}
template <class Search, class VocabularyT> void GenericModel<Search, VocabularyT>::LoadFromARPA(util::FilePiece &f, const std::vector<size_t> &counts, const Config &config) {
// Read the unigrams.
Read1Grams(f, counts[0], vocab_, unigram_);
bool saw_unk = vocab_.FinishedLoading(unigram_);
if (!saw_unk) {
switch(config.unknown_missing) {
case Config::THROW_UP:
{
SpecialWordMissingException e("<unk>");
e << " and configuration was set to throw if unknown is missing";
throw e;
}
case Config::COMPLAIN:
if (config.messages) *config.messages << "Language model is missing <unk>. Substituting probability " << config.unknown_missing_prob << "." << std::endl;
// There's no break;. This is by design.
case Config::SILENT:
// Default probabilities for unknown.
unigram_[0].backoff = 0.0;
unigram_[0].prob = config.unknown_missing_prob;
break;
}
}
// Read the n-grams.
for (unsigned int n = 2; n < counts.size(); ++n) {
ReadNGrams(f, n, counts[n-1], vocab_, middle_[n-2]);
}
ReadNGrams(f, counts.size(), counts[counts.size() - 1], vocab_, longest_);
if (std::fabs(unigram_[0].backoff) > 0.0000001) UTIL_THROW(FormatLoadException, "Backoff for unknown word should be zero, but was given as " << unigram_[0].backoff);
}
/* Ugly optimized function.
* in_state contains the previous ngram's length and backoff probabilites to
* be used here. out_state is populated with the found ngram length and
* backoffs that the next call will find useful.
*
* The search goes in increasing order of ngram length.
*/
template <class Search, class VocabularyT> FullScoreReturn GenericModel<Search, VocabularyT>::FullScore(
const State &in_state,
const WordIndex new_word,
State &out_state) const {
FullScoreReturn ret;
// This is end pointer passed to SumBackoffs.
const ProbBackoff &unigram = unigram_[new_word];
if (new_word == 0) {
ret.ngram_length = out_state.valid_length_ = 0;
// all of backoff.
ret.prob = std::accumulate(
in_state.backoff_,
in_state.backoff_ + in_state.valid_length_,
unigram.prob);
return ret;
}
float *backoff_out(out_state.backoff_);
*backoff_out = unigram.backoff;
ret.prob = unigram.prob;
out_state.history_[0] = new_word;
if (in_state.valid_length_ == 0) {
ret.ngram_length = out_state.valid_length_ = 1;
// No backoff because NGramLength() == 0 and unknown can't have backoff.
return ret;
}
++backoff_out;
// Ok now we now that the bigram contains known words. Start by looking it up.
uint64_t lookup_hash = static_cast<uint64_t>(new_word);
const WordIndex *hist_iter = in_state.history_;
const WordIndex *const hist_end = hist_iter + in_state.valid_length_;
typename std::vector<Middle>::const_iterator mid_iter = middle_.begin();
for (; ; ++mid_iter, ++hist_iter, ++backoff_out) {
if (hist_iter == hist_end) {
// Used history [in_state.history_, hist_end) and ran out. No backoff.
std::copy(in_state.history_, hist_end, out_state.history_ + 1);
ret.ngram_length = out_state.valid_length_ = in_state.valid_length_ + 1;
// ret.prob was already set.
return ret;
}
lookup_hash = CombineWordHash(lookup_hash, *hist_iter);
if (mid_iter == middle_.end()) break;
typename Middle::ConstIterator found;
if (!mid_iter->Find(lookup_hash, found)) {
// Didn't find an ngram using hist_iter.
// The history used in the found n-gram is [in_state.history_, hist_iter).
std::copy(in_state.history_, hist_iter, out_state.history_ + 1);
// Therefore, we found a (hist_iter - in_state.history_ + 1)-gram including the last word.
ret.ngram_length = out_state.valid_length_ = (hist_iter - in_state.history_) + 1;
ret.prob = std::accumulate(
in_state.backoff_ + (mid_iter - middle_.begin()),
in_state.backoff_ + in_state.valid_length_,
ret.prob);
return ret;
}
*backoff_out = found->GetValue().backoff;
ret.prob = found->GetValue().prob;
}
typename Longest::ConstIterator found;
if (!longest_.Find(lookup_hash, found)) {
// It's an (P::Order()-1)-gram
std::copy(in_state.history_, in_state.history_ + P::Order() - 2, out_state.history_ + 1);
ret.ngram_length = out_state.valid_length_ = P::Order() - 1;
ret.prob += in_state.backoff_[P::Order() - 2];
return ret;
}
// It's an P::Order()-gram
// out_state.valid_length_ is still P::Order() - 1 because the next lookup will only need that much.
std::copy(in_state.history_, in_state.history_ + P::Order() - 2, out_state.history_ + 1);
out_state.valid_length_ = P::Order() - 1;
ret.ngram_length = P::Order();
ret.prob = found->GetValue().prob;
return ret;
}
template class GenericModel<ProbingSearch, MapVocabulary<ProbingSearch> >;
template class GenericModel<SortedUniformSearch, SortedVocabulary>;
} // namespace detail
} // namespace ngram
} // namespace lm
|