summaryrefslogtreecommitdiff
path: root/klm/lm/model_test.cc
blob: 8a122c607cde0242bd03c6998bdd0af9c7970973 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
#include "lm/model.hh"

#include <stdlib.h>

#define BOOST_TEST_MODULE ModelTest
#include <boost/test/unit_test.hpp>
#include <boost/test/floating_point_comparison.hpp>

namespace lm {
namespace ngram {

std::ostream &operator<<(std::ostream &o, const State &state) {
  o << "State length " << static_cast<unsigned int>(state.length) << ':';
  for (const WordIndex *i = state.words; i < state.words + state.length; ++i) {
    o << ' ' << *i;
  }
  return o;
}

namespace {

const char *TestLocation() {
  if (boost::unit_test::framework::master_test_suite().argc < 2) {
    return "test.arpa";
  }
  return boost::unit_test::framework::master_test_suite().argv[1];
}
const char *TestNoUnkLocation() {
  if (boost::unit_test::framework::master_test_suite().argc < 3) {
    return "test_nounk.arpa";
  }
  return boost::unit_test::framework::master_test_suite().argv[2];
}

template <class Model> State GetState(const Model &model, const char *word, const State &in) {
  WordIndex context[in.length + 1];
  context[0] = model.GetVocabulary().Index(word);
  std::copy(in.words, in.words + in.length, context + 1);
  State ret;
  model.GetState(context, context + in.length + 1, ret);
  return ret;
}

#define StartTest(word, ngram, score, indep_left) \
  ret = model.FullScore( \
      state, \
      model.GetVocabulary().Index(word), \
      out);\
  BOOST_CHECK_CLOSE(score, ret.prob, 0.001); \
  BOOST_CHECK_EQUAL(static_cast<unsigned int>(ngram), ret.ngram_length); \
  BOOST_CHECK_GE(std::min<unsigned char>(ngram, 5 - 1), out.length); \
  BOOST_CHECK_EQUAL(indep_left, ret.independent_left); \
  BOOST_CHECK_EQUAL(out, GetState(model, word, state));

#define AppendTest(word, ngram, score, indep_left) \
  StartTest(word, ngram, score, indep_left) \
  state = out;

template <class M> void Starters(const M &model) {
  FullScoreReturn ret;
  Model::State state(model.BeginSentenceState());
  Model::State out;

  StartTest("looking", 2, -0.4846522, true);

  // , probability plus <s> backoff
  StartTest(",", 1, -1.383514 + -0.4149733, true);
  // <unk> probability plus <s> backoff
  StartTest("this_is_not_found", 1, -1.995635 + -0.4149733, true);
}

template <class M> void Continuation(const M &model) {
  FullScoreReturn ret;
  Model::State state(model.BeginSentenceState());
  Model::State out;

  AppendTest("looking", 2, -0.484652, true);
  AppendTest("on", 3, -0.348837, true);
  AppendTest("a", 4, -0.0155266, true);
  AppendTest("little", 5, -0.00306122, true);
  State preserve = state;
  AppendTest("the", 1, -4.04005, true);
  AppendTest("biarritz", 1, -1.9889, true);
  AppendTest("not_found", 1, -2.29666, true);
  AppendTest("more", 1, -1.20632 - 20.0, true);
  AppendTest(".", 2, -0.51363, true);
  AppendTest("</s>", 3, -0.0191651, true);
  BOOST_CHECK_EQUAL(0, state.length);

  state = preserve;
  AppendTest("more", 5, -0.00181395, true);
  BOOST_CHECK_EQUAL(4, state.length);
  AppendTest("loin", 5, -0.0432557, true);
  BOOST_CHECK_EQUAL(1, state.length);
}

template <class M> void Blanks(const M &model) {
  FullScoreReturn ret;
  State state(model.NullContextState());
  State out;
  AppendTest("also", 1, -1.687872, false);
  AppendTest("would", 2, -2, true);
  AppendTest("consider", 3, -3, true);
  State preserve = state;
  AppendTest("higher", 4, -4, true);
  AppendTest("looking", 5, -5, true);
  BOOST_CHECK_EQUAL(1, state.length);

  state = preserve;
  // also would consider not_found
  AppendTest("not_found", 1, -1.995635 - 7.0 - 0.30103, true);

  state = model.NullContextState();
  // higher looking is a blank.  
  AppendTest("higher", 1, -1.509559, false);
  AppendTest("looking", 2, -1.285941 - 0.30103, false);

  State higher_looking = state;

  BOOST_CHECK_EQUAL(1, state.length);
  AppendTest("not_found", 1, -1.995635 - 0.4771212, true);

  state = higher_looking;
  // higher looking consider
  AppendTest("consider", 1, -1.687872 - 0.4771212, true);

  state = model.NullContextState();
  AppendTest("would", 1, -1.687872, false);
  BOOST_CHECK_EQUAL(1, state.length);
  AppendTest("consider", 2, -1.687872 -0.30103, false);
  BOOST_CHECK_EQUAL(2, state.length);
  AppendTest("higher", 3, -1.509559 - 0.30103, false);
  BOOST_CHECK_EQUAL(3, state.length);
  AppendTest("looking", 4, -1.285941 - 0.30103, false);
}

template <class M> void Unknowns(const M &model) {
  FullScoreReturn ret;
  State state(model.NullContextState());
  State out;

  AppendTest("not_found", 1, -1.995635, false);
  State preserve = state;
  AppendTest("not_found2", 2, -15.0, true);
  AppendTest("not_found3", 2, -15.0 - 2.0, true);
  
  state = preserve;
  AppendTest("however", 2, -4, true);
  AppendTest("not_found3", 3, -6, true);
}

template <class M> void MinimalState(const M &model) {
  FullScoreReturn ret;
  State state(model.NullContextState());
  State out;

  AppendTest("baz", 1, -6.535897, true);
  BOOST_CHECK_EQUAL(0, state.length);
  state = model.NullContextState();
  AppendTest("foo", 1, -3.141592, true);
  BOOST_CHECK_EQUAL(1, state.length);
  AppendTest("bar", 2, -6.0, true);
  // Has to include the backoff weight.  
  BOOST_CHECK_EQUAL(1, state.length);
  AppendTest("bar", 1, -2.718281 + 3.0, true);
  BOOST_CHECK_EQUAL(1, state.length);

  state = model.NullContextState();
  AppendTest("to", 1, -1.687872, false);
  AppendTest("look", 2, -0.2922095, true);
  BOOST_CHECK_EQUAL(2, state.length);
  AppendTest("good", 3, -7, true);
}

template <class M> void ExtendLeftTest(const M &model) {
  State right;
  FullScoreReturn little(model.FullScore(model.NullContextState(), model.GetVocabulary().Index("little"), right));
  const float kLittleProb = -1.285941;
  BOOST_CHECK_CLOSE(kLittleProb, little.prob, 0.001);
  unsigned char next_use;
  float backoff_out[4];

  FullScoreReturn extend_none(model.ExtendLeft(NULL, NULL, NULL, little.extend_left, 1, NULL, next_use));
  BOOST_CHECK_EQUAL(0, next_use);
  BOOST_CHECK_EQUAL(little.extend_left, extend_none.extend_left);
  BOOST_CHECK_CLOSE(little.prob - little.rest, extend_none.prob, 0.001);
  BOOST_CHECK_EQUAL(1, extend_none.ngram_length);

  const WordIndex a = model.GetVocabulary().Index("a");
  float backoff_in = 3.14;
  // a little
  FullScoreReturn extend_a(model.ExtendLeft(&a, &a + 1, &backoff_in, little.extend_left, 1, backoff_out, next_use));
  BOOST_CHECK_EQUAL(1, next_use);
  BOOST_CHECK_CLOSE(-0.69897, backoff_out[0], 0.001);
  BOOST_CHECK_CLOSE(-0.09132547 - little.rest, extend_a.prob, 0.001);
  BOOST_CHECK_EQUAL(2, extend_a.ngram_length);
  BOOST_CHECK(!extend_a.independent_left);

  const WordIndex on = model.GetVocabulary().Index("on");
  FullScoreReturn extend_on(model.ExtendLeft(&on, &on + 1, &backoff_in, extend_a.extend_left, 2, backoff_out, next_use));
  BOOST_CHECK_EQUAL(1, next_use);
  BOOST_CHECK_CLOSE(-0.4771212, backoff_out[0], 0.001);
  BOOST_CHECK_CLOSE(-0.0283603 - (extend_a.rest + little.rest), extend_on.prob, 0.001);
  BOOST_CHECK_EQUAL(3, extend_on.ngram_length);
  BOOST_CHECK(!extend_on.independent_left);

  const WordIndex both[2] = {a, on};
  float backoff_in_arr[4];
  FullScoreReturn extend_both(model.ExtendLeft(both, both + 2, backoff_in_arr, little.extend_left, 1, backoff_out, next_use));
  BOOST_CHECK_EQUAL(2, next_use);
  BOOST_CHECK_CLOSE(-0.69897, backoff_out[0], 0.001);
  BOOST_CHECK_CLOSE(-0.4771212, backoff_out[1], 0.001);
  BOOST_CHECK_CLOSE(-0.0283603 - little.rest, extend_both.prob, 0.001);
  BOOST_CHECK_EQUAL(3, extend_both.ngram_length);
  BOOST_CHECK(!extend_both.independent_left);
  BOOST_CHECK_EQUAL(extend_on.extend_left, extend_both.extend_left);
}

#define StatelessTest(word, provide, ngram, score) \
  ret = model.FullScoreForgotState(indices + num_words - word, indices + num_words - word + provide, indices[num_words - word - 1], state); \
  BOOST_CHECK_CLOSE(score, ret.prob, 0.001); \
  BOOST_CHECK_EQUAL(static_cast<unsigned int>(ngram), ret.ngram_length); \
  model.GetState(indices + num_words - word, indices + num_words - word + provide, before); \
  ret = model.FullScore(before, indices[num_words - word - 1], out); \
  BOOST_CHECK(state == out); \
  BOOST_CHECK_CLOSE(score, ret.prob, 0.001); \
  BOOST_CHECK_EQUAL(static_cast<unsigned int>(ngram), ret.ngram_length);

template <class M> void Stateless(const M &model) {
  const char *words[] = {"<s>", "looking", "on", "a", "little", "the", "biarritz", "not_found", "more", ".", "</s>"};
  const size_t num_words = sizeof(words) / sizeof(const char*);
  // Silience "array subscript is above array bounds" when extracting end pointer.
  WordIndex indices[num_words + 1];
  for (unsigned int i = 0; i < num_words; ++i) {
    indices[num_words - 1 - i] = model.GetVocabulary().Index(words[i]);
  }
  FullScoreReturn ret;
  State state, out, before;

  ret = model.FullScoreForgotState(indices + num_words - 1, indices + num_words, indices[num_words - 2], state);
  BOOST_CHECK_CLOSE(-0.484652, ret.prob, 0.001);
  StatelessTest(1, 1, 2, -0.484652);

  // looking
  StatelessTest(1, 2, 2, -0.484652);
  // on
  AppendTest("on", 3, -0.348837, true);
  StatelessTest(2, 3, 3, -0.348837);
  StatelessTest(2, 2, 3, -0.348837);
  StatelessTest(2, 1, 2, -0.4638903);
  // a
  StatelessTest(3, 4, 4, -0.0155266);
  // little
  AppendTest("little", 5, -0.00306122, true);
  StatelessTest(4, 5, 5, -0.00306122);
  // the
  AppendTest("the", 1, -4.04005, true);
  StatelessTest(5, 5, 1, -4.04005);
  // No context of the.  
  StatelessTest(5, 0, 1, -1.687872);
  // biarritz
  StatelessTest(6, 1, 1, -1.9889);
  // not found
  StatelessTest(7, 1, 1, -2.29666);
  StatelessTest(7, 0, 1, -1.995635);

  WordIndex unk[1];
  unk[0] = 0;
  model.GetState(unk, unk + 1, state);
  BOOST_CHECK_EQUAL(1, state.length);
  BOOST_CHECK_EQUAL(static_cast<WordIndex>(0), state.words[0]);
}

template <class M> void NoUnkCheck(const M &model) {
  WordIndex unk_index = 0;
  State state;

  FullScoreReturn ret = model.FullScoreForgotState(&unk_index, &unk_index + 1, unk_index, state);
  BOOST_CHECK_CLOSE(-100.0, ret.prob, 0.001);
}

template <class M> void Everything(const M &m) {
  Starters(m);
  Continuation(m);
  Blanks(m);
  Unknowns(m);
  MinimalState(m);
  ExtendLeftTest(m);
  Stateless(m);
}

class ExpectEnumerateVocab : public EnumerateVocab {
  public:
    ExpectEnumerateVocab() {}

    void Add(WordIndex index, const StringPiece &str) {
      BOOST_CHECK_EQUAL(seen.size(), index);
      seen.push_back(std::string(str.data(), str.length()));
    }

    void Check(const base::Vocabulary &vocab) {
      BOOST_CHECK_EQUAL(37ULL, seen.size());
      BOOST_REQUIRE(!seen.empty());
      BOOST_CHECK_EQUAL("<unk>", seen[0]);
      for (WordIndex i = 0; i < seen.size(); ++i) {
        BOOST_CHECK_EQUAL(i, vocab.Index(seen[i]));
      }
    }

    void Clear() {
      seen.clear();
    }

    std::vector<std::string> seen;
};

template <class ModelT> void LoadingTest() {
  Config config;
  config.arpa_complain = Config::NONE;
  config.messages = NULL;
  config.probing_multiplier = 2.0;
  {
    ExpectEnumerateVocab enumerate;
    config.enumerate_vocab = &enumerate;
    ModelT m(TestLocation(), config);
    enumerate.Check(m.GetVocabulary());
    BOOST_CHECK_EQUAL((WordIndex)37, m.GetVocabulary().Bound());
    Everything(m);
  }
  {
    ExpectEnumerateVocab enumerate;
    config.enumerate_vocab = &enumerate;
    ModelT m(TestNoUnkLocation(), config);
    enumerate.Check(m.GetVocabulary());
    BOOST_CHECK_EQUAL((WordIndex)37, m.GetVocabulary().Bound());
    NoUnkCheck(m);
  }
}

BOOST_AUTO_TEST_CASE(probing) {
  LoadingTest<Model>();
}
BOOST_AUTO_TEST_CASE(trie) {
  LoadingTest<TrieModel>();
}
BOOST_AUTO_TEST_CASE(quant_trie) {
  LoadingTest<QuantTrieModel>();
}
BOOST_AUTO_TEST_CASE(bhiksha_trie) {
  LoadingTest<ArrayTrieModel>();
}
BOOST_AUTO_TEST_CASE(quant_bhiksha_trie) {
  LoadingTest<QuantArrayTrieModel>();
}

template <class ModelT> void BinaryTest() {
  Config config;
  config.write_mmap = "test.binary";
  config.messages = NULL;
  ExpectEnumerateVocab enumerate;
  config.enumerate_vocab = &enumerate;

  {
    ModelT copy_model(TestLocation(), config);
    enumerate.Check(copy_model.GetVocabulary());
    enumerate.Clear();
    Everything(copy_model);
  }

  config.write_mmap = NULL;

  ModelType type;
  BOOST_REQUIRE(RecognizeBinary("test.binary", type));
  BOOST_CHECK_EQUAL(ModelT::kModelType, type);

  {
    ModelT binary("test.binary", config);
    enumerate.Check(binary.GetVocabulary());
    Everything(binary);
  }
  unlink("test.binary");

  // Now test without <unk>.
  config.write_mmap = "test_nounk.binary";
  config.messages = NULL;
  enumerate.Clear();
  {
    ModelT copy_model(TestNoUnkLocation(), config);
    enumerate.Check(copy_model.GetVocabulary());
    enumerate.Clear();
    NoUnkCheck(copy_model);
  }
  config.write_mmap = NULL;
  {
    ModelT binary(TestNoUnkLocation(), config);
    enumerate.Check(binary.GetVocabulary());
    NoUnkCheck(binary);
  }
  unlink("test_nounk.binary");
}

BOOST_AUTO_TEST_CASE(write_and_read_probing) {
  BinaryTest<ProbingModel>();
}
BOOST_AUTO_TEST_CASE(write_and_read_rest_probing) {
  BinaryTest<RestProbingModel>();
}
BOOST_AUTO_TEST_CASE(write_and_read_trie) {
  BinaryTest<TrieModel>();
}
BOOST_AUTO_TEST_CASE(write_and_read_quant_trie) {
  BinaryTest<QuantTrieModel>();
}
BOOST_AUTO_TEST_CASE(write_and_read_array_trie) {
  BinaryTest<ArrayTrieModel>();
}
BOOST_AUTO_TEST_CASE(write_and_read_quant_array_trie) {
  BinaryTest<QuantArrayTrieModel>();
}

BOOST_AUTO_TEST_CASE(rest_max) {
  Config config;
  config.arpa_complain = Config::NONE;
  config.messages = NULL;

  RestProbingModel model(TestLocation(), config);
  State state, out;
  FullScoreReturn ret(model.FullScore(model.NullContextState(), model.GetVocabulary().Index("."), state));
  BOOST_CHECK_CLOSE(-0.2705918, ret.rest, 0.001);
  BOOST_CHECK_CLOSE(-0.01916512, model.FullScore(state, model.GetVocabulary().EndSentence(), out).rest, 0.001);
}

} // namespace
} // namespace ngram
} // namespace lm