1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
|
#include "lm/builder/pipeline.hh"
#include "lm/builder/adjust_counts.hh"
#include "lm/builder/corpus_count.hh"
#include "lm/builder/initial_probabilities.hh"
#include "lm/builder/interpolate.hh"
#include "lm/builder/print.hh"
#include "lm/builder/sort.hh"
#include "lm/sizes.hh"
#include "util/exception.hh"
#include "util/file.hh"
#include "util/stream/io.hh"
#include <algorithm>
#include <iostream>
#include <vector>
namespace lm { namespace builder {
namespace {
void PrintStatistics(const std::vector<uint64_t> &counts, const std::vector<Discount> &discounts) {
std::cerr << "Statistics:\n";
for (size_t i = 0; i < counts.size(); ++i) {
std::cerr << (i + 1) << ' ' << counts[i];
for (size_t d = 1; d <= 3; ++d)
std::cerr << " D" << d << (d == 3 ? "+=" : "=") << discounts[i].amount[d];
std::cerr << '\n';
}
}
class Master {
public:
explicit Master(const PipelineConfig &config)
: config_(config), chains_(config.order), files_(config.order) {
config_.minimum_block = std::max(NGram::TotalSize(config_.order), config_.minimum_block);
}
const PipelineConfig &Config() const { return config_; }
Chains &MutableChains() { return chains_; }
template <class T> Master &operator>>(const T &worker) {
chains_ >> worker;
return *this;
}
// This takes the (partially) sorted ngrams and sets up for adjusted counts.
void InitForAdjust(util::stream::Sort<SuffixOrder, AddCombiner> &ngrams, WordIndex types) {
const std::size_t each_order_min = config_.minimum_block * config_.block_count;
// We know how many unigrams there are. Don't allocate more than needed to them.
const std::size_t min_chains = (config_.order - 1) * each_order_min +
std::min(types * NGram::TotalSize(1), each_order_min);
// Do merge sort with calculated laziness.
const std::size_t merge_using = ngrams.Merge(std::min(config_.TotalMemory() - min_chains, ngrams.DefaultLazy()));
std::vector<uint64_t> count_bounds(1, types);
CreateChains(config_.TotalMemory() - merge_using, count_bounds);
ngrams.Output(chains_.back(), merge_using);
// Setup unigram file.
files_.push_back(util::MakeTemp(config_.TempPrefix()));
}
// For initial probabilities, but this is generic.
void SortAndReadTwice(const std::vector<uint64_t> &counts, Sorts<ContextOrder> &sorts, Chains &second, util::stream::ChainConfig second_config) {
// Do merge first before allocating chain memory.
for (std::size_t i = 1; i < config_.order; ++i) {
sorts[i - 1].Merge(0);
}
// There's no lazy merge, so just divide memory amongst the chains.
CreateChains(config_.TotalMemory(), counts);
chains_.back().ActivateProgress();
chains_[0] >> files_[0].Source();
second_config.entry_size = NGram::TotalSize(1);
second.push_back(second_config);
second.back() >> files_[0].Source();
for (std::size_t i = 1; i < config_.order; ++i) {
util::scoped_fd fd(sorts[i - 1].StealCompleted());
chains_[i].SetProgressTarget(util::SizeOrThrow(fd.get()));
chains_[i] >> util::stream::PRead(util::DupOrThrow(fd.get()), true);
second_config.entry_size = NGram::TotalSize(i + 1);
second.push_back(second_config);
second.back() >> util::stream::PRead(fd.release(), true);
}
}
// There is no sort after this, so go for broke on lazy merging.
template <class Compare> void MaximumLazyInput(const std::vector<uint64_t> &counts, Sorts<Compare> &sorts) {
// Determine the minimum we can use for all the chains.
std::size_t min_chains = 0;
for (std::size_t i = 0; i < config_.order; ++i) {
min_chains += std::min(counts[i] * NGram::TotalSize(i + 1), static_cast<uint64_t>(config_.minimum_block));
}
std::size_t for_merge = min_chains > config_.TotalMemory() ? 0 : (config_.TotalMemory() - min_chains);
std::vector<std::size_t> laziness;
// Prioritize longer n-grams.
for (util::stream::Sort<SuffixOrder> *i = sorts.end() - 1; i >= sorts.begin(); --i) {
laziness.push_back(i->Merge(for_merge));
assert(for_merge >= laziness.back());
for_merge -= laziness.back();
}
std::reverse(laziness.begin(), laziness.end());
CreateChains(for_merge + min_chains, counts);
chains_.back().ActivateProgress();
chains_[0] >> files_[0].Source();
for (std::size_t i = 1; i < config_.order; ++i) {
sorts[i - 1].Output(chains_[i], laziness[i - 1]);
}
}
void BufferFinal(const std::vector<uint64_t> &counts) {
chains_[0] >> files_[0].Sink();
for (std::size_t i = 1; i < config_.order; ++i) {
files_.push_back(util::MakeTemp(config_.TempPrefix()));
chains_[i] >> files_[i].Sink();
}
chains_.Wait(true);
// Use less memory. Because we can.
CreateChains(std::min(config_.sort.buffer_size * config_.order, config_.TotalMemory()), counts);
for (std::size_t i = 0; i < config_.order; ++i) {
chains_[i] >> files_[i].Source();
}
}
template <class Compare> void SetupSorts(Sorts<Compare> &sorts) {
sorts.Init(config_.order - 1);
// Unigrams don't get sorted because their order is always the same.
chains_[0] >> files_[0].Sink();
for (std::size_t i = 1; i < config_.order; ++i) {
sorts.push_back(chains_[i], config_.sort, Compare(i + 1));
}
chains_.Wait(true);
}
private:
// Create chains, allocating memory to them. Totally heuristic. Count
// bounds are upper bounds on the counts or not present.
void CreateChains(std::size_t remaining_mem, const std::vector<uint64_t> &count_bounds) {
std::vector<std::size_t> assignments;
assignments.reserve(config_.order);
// Start by assigning maximum memory usage (to be refined later).
for (std::size_t i = 0; i < count_bounds.size(); ++i) {
assignments.push_back(static_cast<std::size_t>(std::min(
static_cast<uint64_t>(remaining_mem),
count_bounds[i] * static_cast<uint64_t>(NGram::TotalSize(i + 1)))));
}
assignments.resize(config_.order, remaining_mem);
// Now we know how much memory everybody wants. How much will they get?
// Proportional to this.
std::vector<float> portions;
// Indices of orders that have yet to be assigned.
std::vector<std::size_t> unassigned;
for (std::size_t i = 0; i < config_.order; ++i) {
portions.push_back(static_cast<float>((i+1) * NGram::TotalSize(i+1)));
unassigned.push_back(i);
}
/*If somebody doesn't eat their full dinner, give it to the rest of the
* family. Then somebody else might not eat their full dinner etc. Ends
* when everybody unassigned is hungry.
*/
float sum;
bool found_more;
std::vector<std::size_t> block_count(config_.order);
do {
sum = 0.0;
for (std::size_t i = 0; i < unassigned.size(); ++i) {
sum += portions[unassigned[i]];
}
found_more = false;
// If the proportional assignment is more than needed, give it just what it needs.
for (std::vector<std::size_t>::iterator i = unassigned.begin(); i != unassigned.end();) {
if (assignments[*i] <= remaining_mem * (portions[*i] / sum)) {
remaining_mem -= assignments[*i];
block_count[*i] = 1;
i = unassigned.erase(i);
found_more = true;
} else {
++i;
}
}
} while (found_more);
for (std::vector<std::size_t>::iterator i = unassigned.begin(); i != unassigned.end(); ++i) {
assignments[*i] = remaining_mem * (portions[*i] / sum);
block_count[*i] = config_.block_count;
}
chains_.clear();
std::cerr << "Chain sizes:";
for (std::size_t i = 0; i < config_.order; ++i) {
std::cerr << ' ' << (i+1) << ":" << assignments[i];
chains_.push_back(util::stream::ChainConfig(NGram::TotalSize(i + 1), block_count[i], assignments[i]));
}
std::cerr << std::endl;
}
PipelineConfig config_;
Chains chains_;
// Often only unigrams, but sometimes all orders.
FixedArray<util::stream::FileBuffer> files_;
};
void CountText(int text_file /* input */, int vocab_file /* output */, Master &master, uint64_t &token_count, std::string &text_file_name) {
const PipelineConfig &config = master.Config();
std::cerr << "=== 1/5 Counting and sorting n-grams ===" << std::endl;
UTIL_THROW_IF(config.TotalMemory() < config.assume_vocab_hash_size, util::Exception, "Vocab hash size estimate " << config.assume_vocab_hash_size << " exceeds total memory " << config.TotalMemory());
std::size_t memory_for_chain =
// This much memory to work with after vocab hash table.
static_cast<float>(config.TotalMemory() - config.assume_vocab_hash_size) /
// Solve for block size including the dedupe multiplier for one block.
(static_cast<float>(config.block_count) + CorpusCount::DedupeMultiplier(config.order)) *
// Chain likes memory expressed in terms of total memory.
static_cast<float>(config.block_count);
util::stream::Chain chain(util::stream::ChainConfig(NGram::TotalSize(config.order), config.block_count, memory_for_chain));
WordIndex type_count;
util::FilePiece text(text_file, NULL, &std::cerr);
text_file_name = text.FileName();
CorpusCount counter(text, vocab_file, token_count, type_count, chain.BlockSize() / chain.EntrySize());
chain >> boost::ref(counter);
util::stream::Sort<SuffixOrder, AddCombiner> sorter(chain, config.sort, SuffixOrder(config.order), AddCombiner());
chain.Wait(true);
std::cerr << "=== 2/5 Calculating and sorting adjusted counts ===" << std::endl;
master.InitForAdjust(sorter, type_count);
}
void InitialProbabilities(const std::vector<uint64_t> &counts, const std::vector<Discount> &discounts, Master &master, Sorts<SuffixOrder> &primary, FixedArray<util::stream::FileBuffer> &gammas) {
const PipelineConfig &config = master.Config();
Chains second(config.order);
{
Sorts<ContextOrder> sorts;
master.SetupSorts(sorts);
PrintStatistics(counts, discounts);
lm::ngram::ShowSizes(counts);
std::cerr << "=== 3/5 Calculating and sorting initial probabilities ===" << std::endl;
master.SortAndReadTwice(counts, sorts, second, config.initial_probs.adder_in);
}
Chains gamma_chains(config.order);
InitialProbabilities(config.initial_probs, discounts, master.MutableChains(), second, gamma_chains);
// Don't care about gamma for 0.
gamma_chains[0] >> util::stream::kRecycle;
gammas.Init(config.order - 1);
for (std::size_t i = 1; i < config.order; ++i) {
gammas.push_back(util::MakeTemp(config.TempPrefix()));
gamma_chains[i] >> gammas[i - 1].Sink();
}
// Has to be done here due to gamma_chains scope.
master.SetupSorts(primary);
}
void InterpolateProbabilities(const std::vector<uint64_t> &counts, Master &master, Sorts<SuffixOrder> &primary, FixedArray<util::stream::FileBuffer> &gammas) {
std::cerr << "=== 4/5 Calculating and writing order-interpolated probabilities ===" << std::endl;
const PipelineConfig &config = master.Config();
master.MaximumLazyInput(counts, primary);
Chains gamma_chains(config.order - 1);
util::stream::ChainConfig read_backoffs(config.read_backoffs);
read_backoffs.entry_size = sizeof(float);
for (std::size_t i = 0; i < config.order - 1; ++i) {
gamma_chains.push_back(read_backoffs);
gamma_chains.back() >> gammas[i].Source();
}
master >> Interpolate(counts[0], ChainPositions(gamma_chains));
gamma_chains >> util::stream::kRecycle;
master.BufferFinal(counts);
}
} // namespace
void Pipeline(PipelineConfig config, int text_file, int out_arpa) {
// Some fail-fast sanity checks.
if (config.sort.buffer_size * 4 > config.TotalMemory()) {
config.sort.buffer_size = config.TotalMemory() / 4;
std::cerr << "Warning: changing sort block size to " << config.sort.buffer_size << " bytes due to low total memory." << std::endl;
}
if (config.minimum_block < NGram::TotalSize(config.order)) {
config.minimum_block = NGram::TotalSize(config.order);
std::cerr << "Warning: raising minimum block to " << config.minimum_block << " to fit an ngram in every block." << std::endl;
}
UTIL_THROW_IF(config.sort.buffer_size < config.minimum_block, util::Exception, "Sort block size " << config.sort.buffer_size << " is below the minimum block size " << config.minimum_block << ".");
UTIL_THROW_IF(config.TotalMemory() < config.minimum_block * config.order * config.block_count, util::Exception,
"Not enough memory to fit " << (config.order * config.block_count) << " blocks with minimum size " << config.minimum_block << ". Increase memory to " << (config.minimum_block * config.order * config.block_count) << " bytes or decrease the minimum block size.");
UTIL_TIMER("(%w s) Total wall time elapsed\n");
Master master(config);
util::scoped_fd vocab_file(config.vocab_file.empty() ?
util::MakeTemp(config.TempPrefix()) :
util::CreateOrThrow(config.vocab_file.c_str()));
uint64_t token_count;
std::string text_file_name;
CountText(text_file, vocab_file.get(), master, token_count, text_file_name);
std::vector<uint64_t> counts;
std::vector<Discount> discounts;
master >> AdjustCounts(counts, discounts);
{
FixedArray<util::stream::FileBuffer> gammas;
Sorts<SuffixOrder> primary;
InitialProbabilities(counts, discounts, master, primary, gammas);
InterpolateProbabilities(counts, master, primary, gammas);
}
std::cerr << "=== 5/5 Writing ARPA model ===" << std::endl;
VocabReconstitute vocab(vocab_file.get());
UTIL_THROW_IF(vocab.Size() != counts[0], util::Exception, "Vocab words don't match up. Is there a null byte in the input?");
HeaderInfo header_info(text_file_name, token_count);
master >> PrintARPA(vocab, counts, (config.verbose_header ? &header_info : NULL), out_arpa) >> util::stream::kRecycle;
master.MutableChains().Wait(true);
}
}} // namespaces
|