1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
|
#include "pyp-topics.hh"
//#include "mt19937ar.h"
void PYPTopics::sample(const Corpus& corpus, int samples) {
if (!m_backoff.get()) {
m_word_pyps.clear();
m_word_pyps.push_back(PYPs());
}
std::cerr << " Training with " << m_word_pyps.size()-1 << " backoff level"
<< (m_word_pyps.size()==2 ? ":" : "s:") << std::endl;
for (int i=0; i<(int)m_word_pyps.size(); ++i)
m_word_pyps.at(i).resize(m_num_topics, PYP<int>(0.5, 1.0));
std::cerr << std::endl;
m_document_pyps.resize(corpus.num_documents(), PYP<int>(0.5, 1.0));
m_topic_p0 = 1.0/m_num_topics;
m_term_p0 = 1.0/corpus.num_types();
m_backoff_p0 = 1.0/corpus.num_documents();
std::cerr << " Documents: " << corpus.num_documents() << " Terms: "
<< corpus.num_types() << std::endl;
// Initialisation pass
int document_id=0, topic_counter=0;
for (Corpus::const_iterator corpusIt=corpus.begin();
corpusIt != corpus.end(); ++corpusIt, ++document_id) {
m_corpus_topics.push_back(DocumentTopics(corpusIt->size(), 0));
int term_index=0;
for (Document::const_iterator docIt=corpusIt->begin();
docIt != corpusIt->end(); ++docIt, ++term_index) {
topic_counter++;
Term term = *docIt;
// sample a new_topic
//int new_topic = (topic_counter % m_num_topics);
int new_topic = (document_id % m_num_topics);
// add the new topic to the PYPs
m_corpus_topics[document_id][term_index] = new_topic;
increment(term, new_topic);
m_document_pyps[document_id].increment(new_topic, m_topic_p0);
}
}
int* randomDocIndices = new int[corpus.num_documents()];
for (int i = 0; i < corpus.num_documents(); ++i)
randomDocIndices[i] = i;
// Sampling phase
for (int curr_sample=0; curr_sample < samples; ++curr_sample) {
std::cerr << "\n -- Sample " << curr_sample << " "; std::cerr.flush();
// Randomize the corpus indexing array
int tmp;
for (int i = corpus.num_documents()-1; i > 0; --i)
{
int j = (int)(mt_genrand_real1() * i);
tmp = randomDocIndices[i];
randomDocIndices[i] = randomDocIndices[j];
randomDocIndices[j] = tmp;
}
// for each document in the corpus
int document_id;
for (int i=0; i<corpus.num_documents(); ++i)
{
document_id = randomDocIndices[i];
// for each term in the document
int term_index=0;
Document::const_iterator docEnd = corpus.at(document_id).end();
for (Document::const_iterator docIt=corpus.at(document_id).begin();
docIt != docEnd; ++docIt, ++term_index) {
Term term = *docIt;
// remove the prevous topic from the PYPs
int current_topic = m_corpus_topics[document_id][term_index];
decrement(term, current_topic);
m_document_pyps[document_id].decrement(current_topic);
// sample a new_topic
int new_topic = sample(document_id, term);
// add the new topic to the PYPs
m_corpus_topics[document_id][term_index] = new_topic;
increment(term, new_topic);
m_document_pyps[document_id].increment(new_topic, m_topic_p0);
}
if (document_id && document_id % 10000 == 0) {
std::cerr << "."; std::cerr.flush();
}
}
if (curr_sample != 0 && curr_sample % 10 == 0) {
std::cerr << " ||| Resampling hyperparameters "; std::cerr.flush();
// resample the hyperparamters
F log_p=0.0; int resample_counter=0;
for (std::vector<PYPs>::iterator levelIt=m_word_pyps.begin();
levelIt != m_word_pyps.end(); ++levelIt) {
for (PYPs::iterator pypIt=levelIt->begin();
pypIt != levelIt->end(); ++pypIt) {
pypIt->resample_prior();
log_p += pypIt->log_restaurant_prob();
if (resample_counter++ % 100 == 0) {
std::cerr << "."; std::cerr.flush();
}
}
}
for (PYPs::iterator pypIt=m_document_pyps.begin();
pypIt != m_document_pyps.end(); ++pypIt) {
pypIt->resample_prior();
log_p += pypIt->log_restaurant_prob();
}
std::cerr << " ||| LLH=" << log_p << std::endl;
}
}
delete [] randomDocIndices;
}
void PYPTopics::decrement(const Term& term, int topic, int level) {
//std::cerr << "PYPTopics::decrement(" << term << "," << topic << "," << level << ")" << std::endl;
m_word_pyps.at(level).at(topic).decrement(term);
if (m_backoff.get()) {
Term backoff_term = (*m_backoff)[term];
if (!m_backoff->is_null(backoff_term))
decrement(backoff_term, topic, level+1);
}
}
void PYPTopics::increment(const Term& term, int topic, int level) {
//std::cerr << "PYPTopics::increment(" << term << "," << topic << "," << level << ")" << std::endl;
m_word_pyps.at(level).at(topic).increment(term, word_pyps_p0(term, topic, level));
if (m_backoff.get()) {
Term backoff_term = (*m_backoff)[term];
if (!m_backoff->is_null(backoff_term))
increment(backoff_term, topic, level+1);
}
}
int PYPTopics::sample(const DocumentId& doc, const Term& term) {
// First pass: collect probs
F sum=0.0;
std::vector<F> sums;
for (int k=0; k<m_num_topics; ++k) {
F p_w_k = prob(term, k);
F p_k_d = m_document_pyps[doc].prob(k, m_topic_p0);
sum += (p_w_k*p_k_d);
sums.push_back(sum);
}
// Second pass: sample a topic
F cutoff = mt_genrand_res53() * sum;
for (int k=0; k<m_num_topics; ++k) {
if (cutoff <= sums[k])
return k;
}
assert(false);
}
PYPTopics::F PYPTopics::word_pyps_p0(const Term& term, int topic, int level) const {
//for (int i=0; i<level+1; ++i) std::cerr << " ";
//std::cerr << "PYPTopics::word_pyps_p0(" << term << "," << topic << "," << level << ")" << std::endl;
F p0 = m_term_p0;
if (m_backoff.get()) {
//static F fudge=m_backoff_p0; // TODO
Term backoff_term = (*m_backoff)[term];
if (!m_backoff->is_null(backoff_term)) {
assert (level < m_backoff->order());
p0 = (1.0/(double)m_backoff->terms_at_level(level))*prob(backoff_term, topic, level+1);
}
else
p0 = m_term_p0;
}
//for (int i=0; i<level+1; ++i) std::cerr << " ";
//std::cerr << "PYPTopics::word_pyps_p0(" << term << "," << topic << "," << level << ") = " << p0 << std::endl;
return p0;
}
PYPTopics::F PYPTopics::prob(const Term& term, int topic, int level) const {
//for (int i=0; i<level+1; ++i) std::cerr << " ";
//std::cerr << "PYPTopics::prob(" << term << "," << topic << "," << level << " " << factor << ")" << std::endl;
F p0 = word_pyps_p0(term, topic, level);
F p_w_k = m_word_pyps.at(level).at(topic).prob(term, p0);
//for (int i=0; i<level+1; ++i) std::cerr << " ";
//std::cerr << "PYPTopics::prob(" << term << "," << topic << "," << level << ") = " << p_w_k << std::endl;
return p_w_k;
}
int PYPTopics::max(const DocumentId& doc, const Term& term) {
//std::cerr << "PYPTopics::max(" << doc << "," << term << ")" << std::endl;
// collect probs
F current_max=0.0;
int current_topic=-1;
for (int k=0; k<m_num_topics; ++k) {
F p_w_k = prob(term, k);
F p_k_d = m_document_pyps[doc].prob(k, m_topic_p0);
F prob = (p_w_k*p_k_d);
if (prob > current_max) {
current_max = prob;
current_topic = k;
}
}
assert(current_topic >= 0);
return current_topic;
}
std::ostream& PYPTopics::print_document_topics(std::ostream& out) const {
for (CorpusTopics::const_iterator corpusIt=m_corpus_topics.begin();
corpusIt != m_corpus_topics.end(); ++corpusIt) {
int term_index=0;
for (DocumentTopics::const_iterator docIt=corpusIt->begin();
docIt != corpusIt->end(); ++docIt, ++term_index) {
if (term_index) out << " ";
out << *docIt;
}
out << std::endl;
}
return out;
}
std::ostream& PYPTopics::print_topic_terms(std::ostream& out) const {
for (PYPs::const_iterator pypsIt=m_word_pyps.front().begin();
pypsIt != m_word_pyps.front().end(); ++pypsIt) {
int term_index=0;
for (PYP<int>::const_iterator termIt=pypsIt->begin();
termIt != pypsIt->end(); ++termIt, ++term_index) {
if (term_index) out << " ";
out << termIt->first << ":" << termIt->second;
}
out << std::endl;
}
return out;
}
|