1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
|
package phrase;
import gnu.trove.TIntArrayList;
import org.apache.commons.math.special.Gamma;
import java.io.PrintStream;
import java.util.Arrays;
import java.util.List;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.LinkedBlockingQueue;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.concurrent.atomic.AtomicLong;
import phrase.Corpus.Edge;
public class PhraseCluster {
public int K;
private int n_phrases, n_words, n_contexts, n_positions;
public Corpus c;
public ExecutorService pool;
double[] lambdaPTCT;
double[][] lambdaPT;
boolean cacheLambda = true;
// emit[tag][position][word] = p(word | tag, position in context)
double emit[][][];
// pi[phrase][tag] = p(tag | phrase)
double pi[][];
public PhraseCluster(int numCluster, Corpus corpus)
{
K=numCluster;
c=corpus;
n_words=c.getNumWords();
n_phrases=c.getNumPhrases();
n_contexts=c.getNumContexts();
n_positions=c.getNumContextPositions();
emit=new double [K][n_positions][n_words];
pi=new double[n_phrases][K];
for(double [][]i:emit)
for(double []j:i)
arr.F.randomise(j, true);
for(double []j:pi)
arr.F.randomise(j, true);
}
public void initialiseVB(double alphaEmit, double alphaPi)
{
assert alphaEmit > 0;
assert alphaPi > 0;
for(double [][]i:emit)
for(double []j:i)
digammaNormalize(j, alphaEmit);
for(double []j:pi)
digammaNormalize(j, alphaPi);
}
void useThreadPool(int threads)
{
assert threads > 0;
pool = Executors.newFixedThreadPool(threads);
}
public double EM()
{
double [][][]exp_emit=new double [K][n_positions][n_words];
double [][]exp_pi=new double[n_phrases][K];
double loglikelihood=0;
//E
for(int phrase=0; phrase < n_phrases; phrase++)
{
List<Edge> contexts = c.getEdgesForPhrase(phrase);
for (int ctx=0; ctx<contexts.size(); ctx++)
{
Edge edge = contexts.get(ctx);
double p[]=posterior(edge);
double z = arr.F.l1norm(p);
assert z > 0;
loglikelihood += edge.getCount() * Math.log(z);
arr.F.l1normalize(p);
int count = edge.getCount();
//increment expected count
TIntArrayList context = edge.getContext();
for(int tag=0;tag<K;tag++)
{
for(int pos=0;pos<n_positions;pos++)
exp_emit[tag][pos][context.get(pos)]+=p[tag]*count;
exp_pi[phrase][tag]+=p[tag]*count;
}
}
}
//M
for(double [][]i:exp_emit)
for(double []j:i)
arr.F.l1normalize(j);
for(double []j:exp_pi)
arr.F.l1normalize(j);
emit=exp_emit;
pi=exp_pi;
return loglikelihood;
}
public double VBEM(double alphaEmit, double alphaPi)
{
// FIXME: broken - needs to be done entirely in log-space
double [][][]exp_emit = new double [K][n_positions][n_words];
double [][]exp_pi = new double[n_phrases][K];
double loglikelihood=0;
//E
for(int phrase=0; phrase < n_phrases; phrase++)
{
List<Edge> contexts = c.getEdgesForPhrase(phrase);
for (int ctx=0; ctx<contexts.size(); ctx++)
{
Edge edge = contexts.get(ctx);
double p[] = posterior(edge);
double z = arr.F.l1norm(p);
assert z > 0;
loglikelihood += edge.getCount() * Math.log(z);
arr.F.l1normalize(p);
int count = edge.getCount();
//increment expected count
TIntArrayList context = edge.getContext();
for(int tag=0;tag<K;tag++)
{
for(int pos=0;pos<n_positions;pos++)
exp_emit[tag][pos][context.get(pos)] += p[tag]*count;
exp_pi[phrase][tag] += p[tag]*count;
}
}
}
// find the KL terms, KL(q||p) where p is symmetric Dirichlet prior and q are the expectations
double kl = 0;
for (int phrase=0; phrase < n_phrases; phrase++)
kl += KL_symmetric_dirichlet(exp_pi[phrase], alphaPi);
for (int tag=0;tag<K;tag++)
for (int pos=0;pos<n_positions; ++pos)
kl += this.KL_symmetric_dirichlet(exp_emit[tag][pos], alphaEmit);
// FIXME: exp_emit[tag][pos] has structural zeros - certain words are *never* seen in that position
//M
for(double [][]i:exp_emit)
for(double []j:i)
digammaNormalize(j, alphaEmit);
emit=exp_emit;
for(double []j:exp_pi)
digammaNormalize(j, alphaPi);
pi=exp_pi;
System.out.println("KL=" + kl + " llh=" + loglikelihood);
System.out.println(Arrays.toString(pi[0]));
System.out.println(Arrays.toString(exp_emit[0][0]));
return kl + loglikelihood;
}
public void digammaNormalize(double [] a, double alpha)
{
double sum=0;
for(int i=0;i<a.length;i++)
sum += a[i];
assert sum > 1e-20;
double dgs = Gamma.digamma(sum + alpha);
for(int i=0;i<a.length;i++)
a[i] = Math.exp(Gamma.digamma(a[i] + alpha/a.length) - dgs);
}
private double KL_symmetric_dirichlet(double[] q, double alpha)
{
// assumes that zeros in q are structural & should be skipped
// FIXME: asssumption doesn't hold
double p0 = alpha;
double q0 = 0;
int n = 0;
for (int i=0; i<q.length; i++)
{
if (q[i] > 0)
{
q0 += q[i];
n += 1;
}
}
double kl = Gamma.logGamma(q0) - Gamma.logGamma(p0);
kl += n * Gamma.logGamma(alpha / n);
double digamma_q0 = Gamma.digamma(q0);
for (int i=0; i<q.length; i++)
{
if (q[i] > 0)
kl -= -Gamma.logGamma(q[i]) - (q[i] - alpha/q.length) * (Gamma.digamma(q[i]) - digamma_q0);
}
return kl;
}
public double PREM(double scalePT, double scaleCT)
{
if (scaleCT == 0)
{
if (pool != null)
return PREM_phrase_constraints_parallel(scalePT);
else
return PREM_phrase_constraints(scalePT);
}
else
return this.PREM_phrase_context_constraints(scalePT, scaleCT);
}
public double PREM_phrase_constraints(double scalePT)
{
double [][][]exp_emit=new double[K][n_positions][n_words];
double [][]exp_pi=new double[n_phrases][K];
if (lambdaPT == null && cacheLambda)
lambdaPT = new double[n_phrases][];
double loglikelihood=0, kl=0, l1lmax=0, primal=0;
int failures=0, iterations=0;
long start = System.currentTimeMillis();
//E
for(int phrase=0; phrase<n_phrases; phrase++){
PhraseObjective po = new PhraseObjective(this, phrase, scalePT, (cacheLambda) ? lambdaPT[phrase] : null);
boolean ok = po.optimizeWithProjectedGradientDescent();
if (!ok) ++failures;
if (cacheLambda) lambdaPT[phrase] = po.getParameters();
iterations += po.getNumberUpdateCalls();
double [][] q=po.posterior();
loglikelihood += po.loglikelihood();
kl += po.KL_divergence();
l1lmax += po.l1lmax();
primal += po.primal(scalePT);
List<Edge> edges = c.getEdgesForPhrase(phrase);
for(int edge=0;edge<q.length;edge++){
Edge e = edges.get(edge);
TIntArrayList context = e.getContext();
int contextCnt = e.getCount();
//increment expected count
for(int tag=0;tag<K;tag++){
for(int pos=0;pos<n_positions;pos++){
exp_emit[tag][pos][context.get(pos)]+=q[edge][tag]*contextCnt;
}
exp_pi[phrase][tag]+=q[edge][tag]*contextCnt;
}
}
}
long end = System.currentTimeMillis();
if (failures > 0)
System.out.println("WARNING: failed to converge in " + failures + "/" + n_phrases + " cases");
System.out.println("\tmean iters: " + iterations/(double)n_phrases + " elapsed time " + (end - start) / 1000.0);
System.out.println("\tllh: " + loglikelihood);
System.out.println("\tKL: " + kl);
System.out.println("\tphrase l1lmax: " + l1lmax);
//M
for(double [][]i:exp_emit)
for(double []j:i)
arr.F.l1normalize(j);
emit=exp_emit;
for(double []j:exp_pi)
arr.F.l1normalize(j);
pi=exp_pi;
return primal;
}
public double PREM_phrase_constraints_parallel(final double scalePT)
{
assert(pool != null);
final LinkedBlockingQueue<PhraseObjective> expectations
= new LinkedBlockingQueue<PhraseObjective>();
double [][][]exp_emit=new double [K][n_positions][n_words];
double [][]exp_pi=new double[n_phrases][K];
double loglikelihood=0, kl=0, l1lmax=0, primal=0;
final AtomicInteger failures = new AtomicInteger(0);
final AtomicLong elapsed = new AtomicLong(0l);
int iterations=0;
long start = System.currentTimeMillis();
if (lambdaPT == null && cacheLambda)
lambdaPT = new double[n_phrases][];
//E
for(int phrase=0;phrase<n_phrases;phrase++){
final int p=phrase;
pool.execute(new Runnable() {
public void run() {
try {
//System.out.println("" + Thread.currentThread().getId() + " optimising lambda for " + p);
long start = System.currentTimeMillis();
PhraseObjective po = new PhraseObjective(PhraseCluster.this, p, scalePT, (cacheLambda) ? lambdaPT[p] : null);
boolean ok = po.optimizeWithProjectedGradientDescent();
if (!ok) failures.incrementAndGet();
long end = System.currentTimeMillis();
elapsed.addAndGet(end - start);
//System.out.println("" + Thread.currentThread().getId() + " done optimising lambda for " + p);
expectations.put(po);
//System.out.println("" + Thread.currentThread().getId() + " added to queue " + p);
} catch (InterruptedException e) {
System.err.println(Thread.currentThread().getId() + " Local e-step thread interrupted; will cause deadlock.");
e.printStackTrace();
}
}
});
}
// aggregate the expectations as they become available
for(int count=0;count<n_phrases;count++) {
try {
//System.out.println("" + Thread.currentThread().getId() + " reading queue #" + count);
// wait (blocking) until something is ready
PhraseObjective po = expectations.take();
// process
int phrase = po.phrase;
if (cacheLambda) lambdaPT[phrase] = po.getParameters();
//System.out.println("" + Thread.currentThread().getId() + " taken phrase " + phrase);
double [][] q=po.posterior();
loglikelihood += po.loglikelihood();
kl += po.KL_divergence();
l1lmax += po.l1lmax();
primal += po.primal(scalePT);
iterations += po.getNumberUpdateCalls();
List<Edge> edges = c.getEdgesForPhrase(phrase);
for(int edge=0;edge<q.length;edge++){
Edge e = edges.get(edge);
TIntArrayList context = e.getContext();
int contextCnt = e.getCount();
//increment expected count
for(int tag=0;tag<K;tag++){
for(int pos=0;pos<n_positions;pos++){
exp_emit[tag][pos][context.get(pos)]+=q[edge][tag]*contextCnt;
}
exp_pi[phrase][tag]+=q[edge][tag]*contextCnt;
}
}
} catch (InterruptedException e)
{
System.err.println("M-step thread interrupted. Probably fatal!");
e.printStackTrace();
}
}
long end = System.currentTimeMillis();
if (failures.get() > 0)
System.out.println("WARNING: failed to converge in " + failures.get() + "/" + n_phrases + " cases");
System.out.println("\tmean iters: " + iterations/(double)n_phrases + " walltime " + (end-start)/1000.0 + " threads " + elapsed.get() / 1000.0);
System.out.println("\tllh: " + loglikelihood);
System.out.println("\tKL: " + kl);
System.out.println("\tphrase l1lmax: " + l1lmax);
//M
for(double [][]i:exp_emit)
for(double []j:i)
arr.F.l1normalize(j);
emit=exp_emit;
for(double []j:exp_pi)
arr.F.l1normalize(j);
pi=exp_pi;
return primal;
}
public double PREM_phrase_context_constraints(double scalePT, double scaleCT)
{
double[][][] exp_emit = new double [K][n_positions][n_words];
double[][] exp_pi = new double[n_phrases][K];
//E step
PhraseContextObjective pco = new PhraseContextObjective(this, lambdaPTCT, pool, scalePT, scaleCT);
boolean ok = pco.optimizeWithProjectedGradientDescent();
if (cacheLambda) lambdaPTCT = pco.getParameters();
//now extract expectations
List<Corpus.Edge> edges = c.getEdges();
for(int e = 0; e < edges.size(); ++e)
{
double [] q = pco.posterior(e);
Corpus.Edge edge = edges.get(e);
TIntArrayList context = edge.getContext();
int contextCnt = edge.getCount();
//increment expected count
for(int tag=0;tag<K;tag++)
{
for(int pos=0;pos<n_positions;pos++)
exp_emit[tag][pos][context.get(pos)]+=q[tag]*contextCnt;
exp_pi[edge.getPhraseId()][tag]+=q[tag]*contextCnt;
}
}
System.out.println("\tllh: " + pco.loglikelihood());
System.out.println("\tKL: " + pco.KL_divergence());
System.out.println("\tphrase l1lmax: " + pco.phrase_l1lmax());
System.out.println("\tcontext l1lmax: " + pco.context_l1lmax());
//M step
for(double [][]i:exp_emit)
for(double []j:i)
arr.F.l1normalize(j);
emit=exp_emit;
for(double []j:exp_pi)
arr.F.l1normalize(j);
pi=exp_pi;
return pco.primal();
}
/**
* @param phrase index of phrase
* @param ctx array of context
* @return unnormalized posterior
*/
public double[] posterior(Corpus.Edge edge)
{
double[] prob=Arrays.copyOf(pi[edge.getPhraseId()], K);
TIntArrayList ctx = edge.getContext();
for(int tag=0;tag<K;tag++)
for(int c=0;c<n_positions;c++)
prob[tag]*=emit[tag][c][ctx.get(c)];
return prob;
}
public void displayPosterior(PrintStream ps)
{
for (Edge edge : c.getEdges())
{
double probs[] = posterior(edge);
arr.F.l1normalize(probs);
// emit phrase
ps.print(edge.getPhraseString());
ps.print("\t");
ps.print(edge.getContextString(true));
int t=arr.F.argmax(probs);
ps.println(" ||| C=" + t);
}
}
public void displayModelParam(PrintStream ps)
{
final double EPS = 1e-6;
ps.println("P(tag|phrase)");
for (int i = 0; i < n_phrases; ++i)
{
ps.print(c.getPhrase(i));
for(int j=0;j<pi[i].length;j++){
if (pi[i][j] > EPS)
ps.print("\t" + j + ": " + pi[i][j]);
}
ps.println();
}
ps.println("P(word|tag,position)");
for (int i = 0; i < K; ++i)
{
for(int position=0;position<n_positions;position++){
ps.println("tag " + i + " position " + position);
for(int word=0;word<emit[i][position].length;word++){
if (emit[i][position][word] > EPS)
ps.print(c.getWord(word)+"="+emit[i][position][word]+"\t");
}
ps.println();
}
ps.println();
}
}
double phrase_l1lmax()
{
double sum=0;
for(int phrase=0; phrase<n_phrases; phrase++)
{
double [] maxes = new double[K];
for (Edge edge : c.getEdgesForPhrase(phrase))
{
double p[] = posterior(edge);
arr.F.l1normalize(p);
for(int tag=0;tag<K;tag++)
maxes[tag] = Math.max(maxes[tag], p[tag]);
}
for(int tag=0;tag<K;tag++)
sum += maxes[tag];
}
return sum;
}
double context_l1lmax()
{
double sum=0;
for(int context=0; context<n_contexts; context++)
{
double [] maxes = new double[K];
for (Edge edge : c.getEdgesForContext(context))
{
double p[] = posterior(edge);
arr.F.l1normalize(p);
for(int tag=0;tag<K;tag++)
maxes[tag] = Math.max(maxes[tag], p[tag]);
}
for(int tag=0;tag<K;tag++)
sum += maxes[tag];
}
return sum;
}
}
|