summaryrefslogtreecommitdiff
path: root/gi/posterior-regularisation/prjava/src/phrase/Agree.java
blob: 091875ce9cac8158147afc7264463c2da648fb3a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
package phrase;

import gnu.trove.TIntArrayList;

import io.FileUtil;

import java.io.File;
import java.io.IOException;
import java.io.PrintStream;
import java.util.List;

import phrase.Corpus.Edge;

public class Agree {
	private PhraseCluster model1;
	private C2F model2;
	Corpus c;
	private int K,n_phrases, n_words, n_contexts, n_positions1,n_positions2;
	
	/**
	 * 
	 * @param numCluster
	 * @param corpus
	 */
	public Agree(int numCluster, Corpus corpus){
		
		model1=new PhraseCluster(numCluster, corpus, 0, 0, 0);
		model2=new C2F(numCluster,corpus);
		c=corpus;
		n_words=c.getNumWords();
		n_phrases=c.getNumPhrases();
		n_contexts=c.getNumContexts();
		n_positions1=c.getNumContextPositions();
		n_positions2=2;
		K=numCluster;
		
	}
	
	/**@brief test
	 * 
	 */
	public static void main(String args[]){
		String in="../pdata/canned.con";
		String out="../pdata/posterior.out";
		int numCluster=25;
		Corpus corpus = null;
		File infile = new File(in);
		try {
			System.out.println("Reading concordance from " + infile);
			corpus = Corpus.readFromFile(FileUtil.reader(infile));
			corpus.printStats(System.out);
		} catch (IOException e) {
			System.err.println("Failed to open input file: " + infile);
			e.printStackTrace();
			System.exit(1);
		}
		
		Agree agree=new Agree(numCluster, corpus);
		int iter=20;
		double llh=0;
		for(int i=0;i<iter;i++){
			llh=agree.EM();
			System.out.println("Iter"+i+", llh: "+llh);
		}
		
		File outfile = new File (out);
		try {
			PrintStream ps = FileUtil.printstream(outfile);
			agree.displayPosterior(ps);
		//	ps.println();
		//	c2f.displayModelParam(ps);
			ps.close();
		} catch (IOException e) {
			System.err.println("Failed to open output file: " + outfile);
			e.printStackTrace();
			System.exit(1);
		}
		
	}
	
	public double EM(){
		
		double [][][]exp_emit1=new double [K][n_positions1][n_words];
		double [][]exp_pi1=new double[n_phrases][K];
		
		double [][][]exp_emit2=new double [K][n_positions2][n_words];
		double [][]exp_pi2=new double[n_contexts][K];
		
		double loglikelihood=0;
		
		//E
		for(int context=0; context< n_contexts; context++){
			
			List<Edge> contexts = c.getEdgesForContext(context);

			for (int ctx=0; ctx<contexts.size(); ctx++){
				Edge edge = contexts.get(ctx);
				int phrase=edge.getPhraseId();
				double p[]=posterior(edge);
				double z = arr.F.l1norm(p);
				assert z > 0;
				loglikelihood += edge.getCount() * Math.log(z);
				arr.F.l1normalize(p);
				
				int count = edge.getCount();
				//increment expected count
				TIntArrayList phraseToks = edge.getPhrase();
				TIntArrayList contextToks = edge.getContext();
				for(int tag=0;tag<K;tag++){

					for(int position=0;position<n_positions1;position++){
						exp_emit1[tag][position][contextToks.get(position)]+=p[tag]*count;
					}
					
					exp_emit2[tag][0][phraseToks.get(0)]+=p[tag]*count;
					exp_emit2[tag][1][phraseToks.get(phraseToks.size()-1)]+=p[tag]*count;
					
					exp_pi1[phrase][tag]+=p[tag]*count;
					exp_pi2[context][tag]+=p[tag]*count;
				}
			}
		}
		
		//System.out.println("Log likelihood: "+loglikelihood);
		
		//M
		for(double [][]i:exp_emit1){
			for(double []j:i){
				arr.F.l1normalize(j);
			}
		}
		
		for(double []j:exp_pi1){
			arr.F.l1normalize(j);
		}
		
		model1.emit=exp_emit1;
		model1.pi=exp_pi1;
		model2.emit=exp_emit2;
		model2.pi=exp_pi2;
		
		return loglikelihood;
	}

	public double[] posterior(Corpus.Edge edge) 
	{
		double[] prob1=model1.posterior(edge);
		double[] prob2=model2.posterior(edge);
		
		for(int i=0;i<prob1.length;i++){
			prob1[i]*=prob2[i];
			prob1[i]=Math.sqrt(prob1[i]);
		}
		
		return prob1;
	}
	
	public void displayPosterior(PrintStream ps)
	{	
		for (Edge edge : c.getEdges())
		{
			double probs[] = posterior(edge);
			arr.F.l1normalize(probs);

			// emit phrase
			ps.print(edge.getPhraseString());
			ps.print("\t");
			ps.print(edge.getContextString(true));
			int t=arr.F.argmax(probs);
			ps.println(" ||| C=" + t);
		}
	}
	
}