1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
|
package optimization.projections;
import java.util.Random;
import optimization.util.MathUtils;
import optimization.util.MatrixOutput;
public class SimplexProjection extends Projection{
double scale;
public SimplexProjection(double scale) {
this.scale = scale;
}
/**
* projects the numbers of the array
* into a simplex of size.
* We follow the description of the paper
* "Efficient Projetions onto the l1-Ball
* for learning in high dimensions"
*/
public void project(double[] original){
double[] ds = new double[original.length];
System.arraycopy(original, 0, ds, 0, ds.length);
//If sum is smaller then zero then its ok
for (int i = 0; i < ds.length; i++) ds[i] = ds[i]>0? ds[i]:0;
double sum = MathUtils.sum(ds);
if (scale - sum >= -1.E-10 ){
System.arraycopy(ds, 0, original, 0, ds.length);
//System.out.println("Not projecting");
return;
}
//System.out.println("projecting " + sum + " scontraints " + scale);
util.Array.sortDescending(ds);
double currentSum = 0;
double previousTheta = 0;
double theta = 0;
for (int i = 0; i < ds.length; i++) {
currentSum+=ds[i];
theta = (currentSum-scale)/(i+1);
if(ds[i]-theta <= 0){
break;
}
previousTheta = theta;
}
//DEBUG
if(previousTheta < 0){
System.out.println("Simple Projection: Theta is smaller than zero: " + previousTheta);
System.exit(-1);
}
for (int i = 0; i < original.length; i++) {
original[i] = Math.max(original[i]-previousTheta, 0);
}
}
/**
* Samples a point from the simplex of scale. Just sample
* random number from 0-scale and then if
* their sum is bigger then sum make them normalize.
* This is probably not sampling uniformly from the simplex but it is
* enough for our goals in here.
*/
Random r = new Random();
public double[] samplePoint(int dimensions) {
double[] newPoint = new double[dimensions];
double sum =0;
for (int i = 0; i < newPoint.length; i++) {
double rand = r.nextDouble()*scale;
sum+=rand;
newPoint[i]=rand;
}
//Normalize
if(sum > scale){
for (int i = 0; i < newPoint.length; i++) {
newPoint[i]=scale*newPoint[i]/sum;
}
}
return newPoint;
}
public static void main(String[] args) {
SimplexProjection sp = new SimplexProjection(1);
double[] point = sp.samplePoint(3);
MatrixOutput.printDoubleArray(point , "random 1 sum:" + MathUtils.sum(point));
point = sp.samplePoint(3);
MatrixOutput.printDoubleArray(point , "random 2 sum:" + MathUtils.sum(point));
point = sp.samplePoint(3);
MatrixOutput.printDoubleArray(point , "random 3 sum:" + MathUtils.sum(point));
double[] d = {0,1.1,-10};
double[] original = d.clone();
MatrixOutput.printDoubleArray(d, "before");
sp.project(d);
MatrixOutput.printDoubleArray(d, "after");
System.out.println("Test projection: " + sp.testProjection(original, d));
}
double epsilon = 1.E-10;
public double[] perturbePoint(double[] point, int parameter){
double[] newPoint = point.clone();
if(MathUtils.almost(MathUtils.sum(point), scale)){
newPoint[parameter]-=epsilon;
}
else if(point[parameter]==0){
newPoint[parameter]+=epsilon;
}else if(MathUtils.almost(point[parameter], scale)){
newPoint[parameter]-=epsilon;
}
else{
newPoint[parameter]-=epsilon;
}
return newPoint;
}
}
|