blob: 0e2e27ac2c0dc9f3c349e01f65617caedb0bb4c6 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
|
package optimization.gradientBasedMethods;
/**
* Defines an optimization objective:
*
*
* @author javg
*
*/
public abstract class Objective {
protected int functionCalls = 0;
protected int gradientCalls = 0;
protected int updateCalls = 0;
protected double[] parameters;
//Contains a cache with the gradient
public double[] gradient;
int debugLevel = 0;
public void setDebugLevel(int level){
debugLevel = level;
}
public int getNumParameters() {
return parameters.length;
}
public double getParameter(int index) {
return parameters[index];
}
public double[] getParameters() {
return parameters;
}
public abstract double[] getGradient( );
public void setParameter(int index, double value) {
parameters[index]=value;
}
public void setParameters(double[] params) {
if(parameters == null){
parameters = new double[params.length];
}
updateCalls++;
System.arraycopy(params, 0, parameters, 0, params.length);
}
public int getNumberFunctionCalls() {
return functionCalls;
}
public int getNumberGradientCalls() {
return gradientCalls;
}
public String finalInfoString() {
return "FE: " + functionCalls + " GE " + gradientCalls + " Params updates" +
updateCalls;
}
public void printParameters() {
System.out.println(toString());
}
public abstract String toString();
public abstract double getValue ();
/**
* Sets the initial objective parameters
* For unconstrained models this just sets the objective params = argument no copying
* For a constrained objective project the parameters and then set
* @param params
*/
public void setInitialParameters(double[] params){
parameters = params;
}
}
|