1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
|
#include "pyp_tm.h"
#include <tr1/unordered_map>
#include <iostream>
#include <queue>
#include "tdict.h"
#include "ccrp.h"
#include "pyp_word_model.h"
#include "tied_resampler.h"
using namespace std;
using namespace std::tr1;
struct FreqBinner {
FreqBinner(const std::string& fname) { fd_.Load(fname); }
unsigned NumberOfBins() const { return fd_.Max() + 1; }
unsigned Bin(const WordID& w) const { return fd_.LookUp(w); }
FreqDict<unsigned> fd_;
};
template <typename Base, class Binner = FreqBinner>
struct ConditionalPYPWordModel {
ConditionalPYPWordModel(Base* b, const Binner* bnr = NULL) :
base(*b),
binner(bnr),
btr(binner ? binner->NumberOfBins() + 1u : 2u) {}
void Summary() const {
cerr << "Number of conditioning contexts: " << r.size() << endl;
for (RuleModelHash::const_iterator it = r.begin(); it != r.end(); ++it) {
cerr << TD::Convert(it->first) << " \tPYP(d=" << it->second.discount() << ",s=" << it->second.strength() << ") --------------------------" << endl;
for (CCRP<vector<WordID> >::const_iterator i2 = it->second.begin(); i2 != it->second.end(); ++i2)
cerr << " " << i2->second.total_dish_count_ << '\t' << TD::GetString(i2->first) << endl;
}
}
void ResampleHyperparameters(MT19937* rng) {
btr.ResampleHyperparameters(rng);
}
prob_t Prob(const WordID src, const vector<WordID>& trglets) const {
RuleModelHash::const_iterator it = r.find(src);
if (it == r.end()) {
return base(trglets);
} else {
return it->second.prob(trglets, base(trglets));
}
}
void Increment(const WordID src, const vector<WordID>& trglets, MT19937* rng) {
RuleModelHash::iterator it = r.find(src);
if (it == r.end()) {
it = r.insert(make_pair(src, CCRP<vector<WordID> >(0.5,1.0))).first;
static const WordID kNULL = TD::Convert("NULL");
unsigned bin = (src == kNULL ? 0 : 1);
if (binner && bin) { bin = binner->Bin(src) + 1; }
btr.Add(bin, &it->second);
}
if (it->second.increment(trglets, base(trglets), rng))
base.Increment(trglets, rng);
}
void Decrement(const WordID src, const vector<WordID>& trglets, MT19937* rng) {
RuleModelHash::iterator it = r.find(src);
assert(it != r.end());
if (it->second.decrement(trglets, rng)) {
base.Decrement(trglets, rng);
}
}
prob_t Likelihood() const {
prob_t p = prob_t::One();
for (RuleModelHash::const_iterator it = r.begin(); it != r.end(); ++it) {
prob_t q; q.logeq(it->second.log_crp_prob());
p *= q;
}
return p;
}
unsigned UniqueConditioningContexts() const {
return r.size();
}
// TODO tie PYP hyperparameters based on source word frequency bins
Base& base;
const Binner* binner;
BinTiedResampler<CCRP<vector<WordID> > > btr;
typedef unordered_map<WordID, CCRP<vector<WordID> > > RuleModelHash;
RuleModelHash r;
};
PYPLexicalTranslation::PYPLexicalTranslation(const vector<vector<WordID> >& lets,
const unsigned num_letters) :
letters(lets),
up0(new PYPWordModel(num_letters)),
tmodel(new ConditionalPYPWordModel<PYPWordModel>(up0, new FreqBinner("10k.freq"))),
kX(-TD::Convert("X")) {}
void PYPLexicalTranslation::Summary() const {
tmodel->Summary();
up0->Summary();
}
prob_t PYPLexicalTranslation::Likelihood() const {
prob_t p = up0->Likelihood();
p *= tmodel->Likelihood();
return p;
}
void PYPLexicalTranslation::ResampleHyperparameters(MT19937* rng) {
tmodel->ResampleHyperparameters(rng);
up0->ResampleHyperparameters(rng);
}
unsigned PYPLexicalTranslation::UniqueConditioningContexts() const {
return tmodel->UniqueConditioningContexts();
}
prob_t PYPLexicalTranslation::Prob(WordID src, WordID trg) const {
return tmodel->Prob(src, letters[trg]);
}
void PYPLexicalTranslation::Increment(WordID src, WordID trg, MT19937* rng) {
tmodel->Increment(src, letters[trg], rng);
}
void PYPLexicalTranslation::Decrement(WordID src, WordID trg, MT19937* rng) {
tmodel->Decrement(src, letters[trg], rng);
}
|