1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
|
#include <iostream>
#include <tr1/memory>
#include <queue>
#include <boost/functional.hpp>
#include <boost/program_options.hpp>
#include <boost/program_options/variables_map.hpp>
#include "gamma_poisson.h"
#include "corpus_tools.h"
#include "m.h"
#include "tdict.h"
#include "sampler.h"
#include "ccrp.h"
#include "tied_resampler.h"
// A not very memory-efficient implementation of an N-gram LM based on PYPs
// as described in Y.-W. Teh. (2006) A Hierarchical Bayesian Language Model
// based on Pitman-Yor Processes. In Proc. ACL.
// I use templates to handle the recursive formalation of the prior, so
// the order of the model has to be specified here, at compile time:
#define kORDER 3
using namespace std;
using namespace tr1;
namespace po = boost::program_options;
boost::shared_ptr<MT19937> prng;
void InitCommandLine(int argc, char** argv, po::variables_map* conf) {
po::options_description opts("Configuration options");
opts.add_options()
("samples,n",po::value<unsigned>()->default_value(300),"Number of samples")
("train,i",po::value<string>(),"Training data file")
("test,T",po::value<string>(),"Test data file")
("discount_prior_a,a",po::value<double>()->default_value(1.0), "discount ~ Beta(a,b): a=this")
("discount_prior_b,b",po::value<double>()->default_value(1.0), "discount ~ Beta(a,b): b=this")
("strength_prior_s,s",po::value<double>()->default_value(1.0), "strength ~ Gamma(s,r): s=this")
("strength_prior_r,r",po::value<double>()->default_value(1.0), "strength ~ Gamma(s,r): r=this")
("random_seed,S",po::value<uint32_t>(), "Random seed");
po::options_description clo("Command line options");
clo.add_options()
("config", po::value<string>(), "Configuration file")
("help", "Print this help message and exit");
po::options_description dconfig_options, dcmdline_options;
dconfig_options.add(opts);
dcmdline_options.add(opts).add(clo);
po::store(parse_command_line(argc, argv, dcmdline_options), *conf);
if (conf->count("config")) {
ifstream config((*conf)["config"].as<string>().c_str());
po::store(po::parse_config_file(config, dconfig_options), *conf);
}
po::notify(*conf);
if (conf->count("help") || (conf->count("train") == 0)) {
cerr << dcmdline_options << endl;
exit(1);
}
}
// uniform distribution over a fixed vocabulary
struct UniformVocabulary {
UniformVocabulary(unsigned vs, double, double, double, double) : p0(1.0 / vs), draws() {}
void increment(WordID, const vector<WordID>&, MT19937*) { ++draws; }
void decrement(WordID, const vector<WordID>&, MT19937*) { --draws; assert(draws >= 0); }
double prob(WordID, const vector<WordID>&) const { return p0; }
void resample_hyperparameters(MT19937*) {}
double log_likelihood() const { return draws * log(p0); }
const double p0;
int draws;
};
// Lord Rothschild. 1986. THE DISTRIBUTION OF ENGLISH DICTIONARY WORD LENGTHS.
// Journal of Statistical Planning and Inference 14 (1986) 311-322
struct PoissonLengthUniformCharWordModel {
explicit PoissonLengthUniformCharWordModel(unsigned vocab_size, double, double, double, double) : plen(5,5), uc(-log(95)), llh() {}
void increment(WordID w, const vector<WordID>& v, MT19937*) {
llh += log(prob(w, v)); // this isn't quite right
plen.increment(TD::Convert(w).size() - 1);
}
void decrement(WordID w, const vector<WordID>& v, MT19937*) {
plen.decrement(TD::Convert(w).size() - 1);
llh -= log(prob(w, v)); // this isn't quite right
}
double prob(WordID w, const vector<WordID>&) const {
const unsigned len = TD::Convert(w).size();
return plen.prob(len - 1) * exp(uc * len);
}
double log_likelihood() const { return llh; }
void resample_hyperparameters(MT19937*) {}
GammaPoisson plen;
const double uc;
double llh;
};
struct PYPAdaptedPoissonLengthUniformCharWordModel {
explicit PYPAdaptedPoissonLengthUniformCharWordModel(unsigned vocab_size, double, double, double, double) :
base(vocab_size,1,1,1,1),
crp(1,1,1,1) {}
void increment(WordID w, const vector<WordID>& v, MT19937* rng) {
double p0 = base.prob(w, v);
if (crp.increment(w, p0, rng))
base.increment(w, v, rng);
}
void decrement(WordID w, const vector<WordID>& v, MT19937* rng) {
if (crp.decrement(w, rng))
base.decrement(w, v, rng);
}
double prob(WordID w, const vector<WordID>& v) const {
double p0 = base.prob(w, v);
return crp.prob(w, p0);
}
double log_likelihood() const { return crp.log_crp_prob() + base.log_likelihood(); }
void resample_hyperparameters(MT19937* rng) { crp.resample_hyperparameters(rng); }
PoissonLengthUniformCharWordModel base;
CCRP<WordID> crp;
};
template <unsigned N> struct PYPLM;
#if 1
template<> struct PYPLM<0> : public UniformVocabulary {
PYPLM(unsigned vs, double a, double b, double c, double d) :
UniformVocabulary(vs, a, b, c, d) {}
};
#else
#if 0
template<> struct PYPLM<0> : public PoissonLengthUniformCharWordModel {
PYPLM(unsigned vs, double a, double b, double c, double d) :
PoissonLengthUniformCharWordModel(vs, a, b, c, d) {}
};
#else
template<> struct PYPLM<0> : public PYPAdaptedPoissonLengthUniformCharWordModel {
PYPLM(unsigned vs, double a, double b, double c, double d) :
PYPAdaptedPoissonLengthUniformCharWordModel(vs, a, b, c, d) {}
};
#endif
#endif
// represents an N-gram LM
template <unsigned N> struct PYPLM {
PYPLM(unsigned vs, double da, double db, double ss, double sr) :
backoff(vs, da, db, ss, sr),
tr(da, db, ss, sr, 0.8, 1.0),
lookup(N-1) {}
void increment(WordID w, const vector<WordID>& context, MT19937* rng) {
const double bo = backoff.prob(w, context);
for (unsigned i = 0; i < N-1; ++i)
lookup[i] = context[context.size() - 1 - i];
typename unordered_map<vector<WordID>, CCRP<WordID>, boost::hash<vector<WordID> > >::iterator it = p.find(lookup);
if (it == p.end()) {
it = p.insert(make_pair(lookup, CCRP<WordID>(0.5,1))).first;
tr.Add(&it->second); // add to resampler
}
if (it->second.increment(w, bo, rng))
backoff.increment(w, context, rng);
}
void decrement(WordID w, const vector<WordID>& context, MT19937* rng) {
for (unsigned i = 0; i < N-1; ++i)
lookup[i] = context[context.size() - 1 - i];
typename unordered_map<vector<WordID>, CCRP<WordID>, boost::hash<vector<WordID> > >::iterator it = p.find(lookup);
assert(it != p.end());
if (it->second.decrement(w, rng))
backoff.decrement(w, context, rng);
}
double prob(WordID w, const vector<WordID>& context) const {
const double bo = backoff.prob(w, context);
for (unsigned i = 0; i < N-1; ++i)
lookup[i] = context[context.size() - 1 - i];
typename unordered_map<vector<WordID>, CCRP<WordID>, boost::hash<vector<WordID> > >::const_iterator it = p.find(lookup);
if (it == p.end()) return bo;
return it->second.prob(w, bo);
}
double log_likelihood() const {
double llh = backoff.log_likelihood();
typename unordered_map<vector<WordID>, CCRP<WordID>, boost::hash<vector<WordID> > >::const_iterator it;
for (it = p.begin(); it != p.end(); ++it)
llh += it->second.log_crp_prob();
llh += tr.LogLikelihood();
return llh;
}
void resample_hyperparameters(MT19937* rng) {
tr.ResampleHyperparameters(rng);
backoff.resample_hyperparameters(rng);
}
PYPLM<N-1> backoff;
TiedResampler<CCRP<WordID> > tr;
double discount_a, discount_b, strength_s, strength_r;
double d, strength;
mutable vector<WordID> lookup; // thread-local
unordered_map<vector<WordID>, CCRP<WordID>, boost::hash<vector<WordID> > > p;
};
int main(int argc, char** argv) {
po::variables_map conf;
InitCommandLine(argc, argv, &conf);
const unsigned samples = conf["samples"].as<unsigned>();
if (conf.count("random_seed"))
prng.reset(new MT19937(conf["random_seed"].as<uint32_t>()));
else
prng.reset(new MT19937);
MT19937& rng = *prng;
vector<vector<WordID> > corpuse;
set<WordID> vocabe;
const WordID kEOS = TD::Convert("</s>");
cerr << "Reading corpus...\n";
CorpusTools::ReadFromFile(conf["train"].as<string>(), &corpuse, &vocabe);
cerr << "E-corpus size: " << corpuse.size() << " sentences\t (" << vocabe.size() << " word types)\n";
vector<vector<WordID> > test;
if (conf.count("test"))
CorpusTools::ReadFromFile(conf["test"].as<string>(), &test);
else
test = corpuse;
PYPLM<kORDER> lm(vocabe.size(),
conf["discount_prior_a"].as<double>(),
conf["discount_prior_b"].as<double>(),
conf["strength_prior_s"].as<double>(),
conf["strength_prior_r"].as<double>());
vector<WordID> ctx(kORDER - 1, TD::Convert("<s>"));
for (int SS=0; SS < samples; ++SS) {
for (int ci = 0; ci < corpuse.size(); ++ci) {
ctx.resize(kORDER - 1);
const vector<WordID>& s = corpuse[ci];
for (int i = 0; i <= s.size(); ++i) {
WordID w = (i < s.size() ? s[i] : kEOS);
if (SS > 0) lm.decrement(w, ctx, &rng);
lm.increment(w, ctx, &rng);
ctx.push_back(w);
}
}
if (SS % 10 == 9) {
cerr << " [LLH=" << lm.log_likelihood() << "]" << endl;
if (SS % 30 == 29) lm.resample_hyperparameters(&rng);
} else { cerr << '.' << flush; }
}
double llh = 0;
unsigned cnt = 0;
unsigned oovs = 0;
for (int ci = 0; ci < test.size(); ++ci) {
ctx.resize(kORDER - 1);
const vector<WordID>& s = test[ci];
for (int i = 0; i <= s.size(); ++i) {
WordID w = (i < s.size() ? s[i] : kEOS);
double lp = log(lm.prob(w, ctx)) / log(2);
if (i < s.size() && vocabe.count(w) == 0) {
cerr << "**OOV ";
++oovs;
lp = 0;
}
cerr << "p(" << TD::Convert(w) << " |";
for (int j = ctx.size() + 1 - kORDER; j < ctx.size(); ++j)
cerr << ' ' << TD::Convert(ctx[j]);
cerr << ") = " << lp << endl;
ctx.push_back(w);
llh -= lp;
cnt++;
}
}
cerr << " Log_10 prob: " << (-llh * log(2) / log(10)) << endl;
cerr << " Count: " << cnt << endl;
cerr << " OOVs: " << oovs << endl;
cerr << "Cross-entropy: " << (llh / cnt) << endl;
cerr << " Perplexity: " << pow(2, llh / cnt) << endl;
return 0;
}
|