blob: 76204a0ea7338c65c75e104d4aade90d0a046bf6 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
|
#ifndef _POISSON_UNIFORM_WORD_MODEL_H_
#define _POISSON_UNIFORM_WORD_MODEL_H_
#include <cmath>
#include <vector>
#include "prob.h"
#include "m.h"
// len ~ Poisson(lambda)
// for (1..len)
// e_i ~ Uniform({Vocabulary})
struct PoissonUniformWordModel {
explicit PoissonUniformWordModel(const unsigned vocab_size,
const unsigned alphabet_size,
const double mean_len = 5) :
lh(prob_t::One()),
v0(-std::log(vocab_size)),
u0(-std::log(alphabet_size)),
mean_length(mean_len) {}
void ResampleHyperparameters(MT19937*) {}
inline prob_t operator()(const std::vector<WordID>& s) const {
prob_t p;
p.logeq(Md::log_poisson(s.size(), mean_length) + s.size() * u0);
//p.logeq(v0);
return p;
}
inline void Increment(const std::vector<WordID>& w, MT19937*) {
lh *= (*this)(w);
}
inline void Decrement(const std::vector<WordID>& w, MT19937 *) {
lh /= (*this)(w);
}
inline prob_t Likelihood() const { return lh; }
void Summary() const {}
private:
prob_t lh; // keeps track of the draws from the base distribution
const double v0; // uniform log prob of generating a word
const double u0; // uniform log prob of generating a letter
const double mean_length; // mean length of a word in the base distribution
};
#endif
|