summaryrefslogtreecommitdiff
path: root/gi/pf/pfdist.cc
blob: ef08a1658671ec2c12ee779f63b621e5ff5c24d8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
#include <iostream>
#include <tr1/memory>
#include <queue>

#include <boost/functional.hpp>
#include <boost/program_options.hpp>
#include <boost/program_options/variables_map.hpp>

#include "pf.h"
#include "base_distributions.h"
#include "reachability.h"
#include "viterbi.h"
#include "hg.h"
#include "trule.h"
#include "tdict.h"
#include "filelib.h"
#include "dict.h"
#include "sampler.h"
#include "ccrp_nt.h"
#include "ccrp_onetable.h"

using namespace std;
using namespace tr1;
namespace po = boost::program_options;

shared_ptr<MT19937> prng;

void InitCommandLine(int argc, char** argv, po::variables_map* conf) {
  po::options_description opts("Configuration options");
  opts.add_options()
        ("samples,s",po::value<unsigned>()->default_value(1000),"Number of samples")
        ("particles,p",po::value<unsigned>()->default_value(30),"Number of particles")
        ("filter_frequency,f",po::value<unsigned>()->default_value(5),"Number of time steps between filterings")
        ("input,i",po::value<string>(),"Read parallel data from")
        ("max_src_phrase",po::value<unsigned>()->default_value(5),"Maximum length of source language phrases")
        ("max_trg_phrase",po::value<unsigned>()->default_value(5),"Maximum length of target language phrases")
        ("model1,m",po::value<string>(),"Model 1 parameters (used in base distribution)")
        ("inverse_model1,M",po::value<string>(),"Inverse Model 1 parameters (used in backward estimate)")
        ("model1_interpolation_weight",po::value<double>()->default_value(0.95),"Mixing proportion of model 1 with uniform target distribution")
        ("random_seed,S",po::value<uint32_t>(), "Random seed");
  po::options_description clo("Command line options");
  clo.add_options()
        ("config", po::value<string>(), "Configuration file")
        ("help,h", "Print this help message and exit");
  po::options_description dconfig_options, dcmdline_options;
  dconfig_options.add(opts);
  dcmdline_options.add(opts).add(clo);
  
  po::store(parse_command_line(argc, argv, dcmdline_options), *conf);
  if (conf->count("config")) {
    ifstream config((*conf)["config"].as<string>().c_str());
    po::store(po::parse_config_file(config, dconfig_options), *conf);
  }
  po::notify(*conf);

  if (conf->count("help") || (conf->count("input") == 0)) {
    cerr << dcmdline_options << endl;
    exit(1);
  }
}

void ReadParallelCorpus(const string& filename,
                vector<vector<WordID> >* f,
                vector<vector<WordID> >* e,
                set<WordID>* vocab_f,
                set<WordID>* vocab_e) {
  f->clear();
  e->clear();
  vocab_f->clear();
  vocab_e->clear();
  istream* in;
  if (filename == "-")
    in = &cin;
  else
    in = new ifstream(filename.c_str());
  assert(*in);
  string line;
  const WordID kDIV = TD::Convert("|||");
  vector<WordID> tmp;
  while(*in) {
    getline(*in, line);
    if (line.empty() && !*in) break;
    e->push_back(vector<int>());
    f->push_back(vector<int>());
    vector<int>& le = e->back();
    vector<int>& lf = f->back();
    tmp.clear();
    TD::ConvertSentence(line, &tmp);
    bool isf = true;
    for (unsigned i = 0; i < tmp.size(); ++i) {
      const int cur = tmp[i];
      if (isf) {
        if (kDIV == cur) { isf = false; } else {
          lf.push_back(cur);
          vocab_f->insert(cur);
        }
      } else {
        assert(cur != kDIV);
        le.push_back(cur);
        vocab_e->insert(cur);
      }
    }
    assert(isf == false);
  }
  if (in != &cin) delete in;
}

#if 0
struct MyConditionalModel {
  MyConditionalModel(PhraseConditionalBase& rcp0) : rp0(&rcp0), base(prob_t::One()), src_phrases(1,1), src_jumps(200, CCRP_NoTable<int>(1,1)) {}

  prob_t srcp0(const vector<WordID>& src) const {
    prob_t p(1.0 / 3000.0);
    p.poweq(src.size());
    prob_t lenp; lenp.logeq(log_poisson(src.size(), 1.0));
    p *= lenp;
    return p;
  }

  void DecrementRule(const TRule& rule) {
    const RuleCRPMap::iterator it = rules.find(rule.f_);
    assert(it != rules.end());
    if (it->second.decrement(rule)) {
      base /= (*rp0)(rule);
      if (it->second.num_customers() == 0)
        rules.erase(it);
    }
    if (src_phrases.decrement(rule.f_))
      base /= srcp0(rule.f_);
  }

  void IncrementRule(const TRule& rule) {
    RuleCRPMap::iterator it = rules.find(rule.f_);
    if (it == rules.end())
      it = rules.insert(make_pair(rule.f_, CCRP_NoTable<TRule>(1,1))).first;
    if (it->second.increment(rule)) {
      base *= (*rp0)(rule);
    }
    if (src_phrases.increment(rule.f_))
      base *= srcp0(rule.f_);
  }

  void IncrementRules(const vector<TRulePtr>& rules) {
    for (int i = 0; i < rules.size(); ++i)
      IncrementRule(*rules[i]);
  }

  void DecrementRules(const vector<TRulePtr>& rules) {
    for (int i = 0; i < rules.size(); ++i)
      DecrementRule(*rules[i]);
  }

  void IncrementJump(int dist, unsigned src_len) {
    assert(src_len > 0);
    if (src_jumps[src_len].increment(dist))
      base *= jp0(dist, src_len);
  }

  void DecrementJump(int dist, unsigned src_len) {
    assert(src_len > 0);
    if (src_jumps[src_len].decrement(dist))
      base /= jp0(dist, src_len);
  }

  void IncrementJumps(const vector<int>& js, unsigned src_len) {
    for (unsigned i = 0; i < js.size(); ++i)
      IncrementJump(js[i], src_len);
  }

  void DecrementJumps(const vector<int>& js, unsigned src_len) {
    for (unsigned i = 0; i < js.size(); ++i)
      DecrementJump(js[i], src_len);
  }

  // p(jump = dist | src_len , z)
  prob_t JumpProbability(int dist, unsigned src_len) {
    const prob_t p0 = jp0(dist, src_len);
    const double lp = src_jumps[src_len].logprob(dist, log(p0));
    prob_t q; q.logeq(lp);
    return q;
  }

  // p(rule.f_ | z) * p(rule.e_ | rule.f_ , z)
  prob_t RuleProbability(const TRule& rule) const {
    const prob_t p0 = (*rp0)(rule);
    prob_t srcp; srcp.logeq(src_phrases.logprob(rule.f_, log(srcp0(rule.f_))));
    const RuleCRPMap::const_iterator it = rules.find(rule.f_);
    if (it == rules.end()) return srcp * p0;
    const double lp = it->second.logprob(rule, log(p0));
    prob_t q; q.logeq(lp);
    return q * srcp;
  }

  prob_t Likelihood() const {
    prob_t p = base;
    for (RuleCRPMap::const_iterator it = rules.begin();
         it != rules.end(); ++it) {
      prob_t cl; cl.logeq(it->second.log_crp_prob());
      p *= cl;
    }
    for (unsigned l = 1; l < src_jumps.size(); ++l) {
      if (src_jumps[l].num_customers() > 0) {
        prob_t q;
        q.logeq(src_jumps[l].log_crp_prob());
        p *= q;
      }
    }
    return p;
  }

  JumpBase jp0;
  const PhraseConditionalBase* rp0;
  prob_t base;
  typedef unordered_map<vector<WordID>, CCRP_NoTable<TRule>, boost::hash<vector<WordID> > > RuleCRPMap;
  RuleCRPMap rules;
  CCRP_NoTable<vector<WordID> > src_phrases;
  vector<CCRP_NoTable<int> > src_jumps;
};

#endif

struct MyJointModel {
  MyJointModel(PhraseJointBase& rcp0) :
    rp0(rcp0), base(prob_t::One()), rules(1,1), src_jumps(200, CCRP_NoTable<int>(1,1)) {}

  void DecrementRule(const TRule& rule) {
    if (rules.decrement(rule))
      base /= rp0(rule);
  }

  void IncrementRule(const TRule& rule) {
    if (rules.increment(rule))
      base *= rp0(rule);
  }

  void IncrementRules(const vector<TRulePtr>& rules) {
    for (int i = 0; i < rules.size(); ++i)
      IncrementRule(*rules[i]);
  }

  void DecrementRules(const vector<TRulePtr>& rules) {
    for (int i = 0; i < rules.size(); ++i)
      DecrementRule(*rules[i]);
  }

  void IncrementJump(int dist, unsigned src_len) {
    assert(src_len > 0);
    if (src_jumps[src_len].increment(dist))
      base *= jp0(dist, src_len);
  }

  void DecrementJump(int dist, unsigned src_len) {
    assert(src_len > 0);
    if (src_jumps[src_len].decrement(dist))
      base /= jp0(dist, src_len);
  }

  void IncrementJumps(const vector<int>& js, unsigned src_len) {
    for (unsigned i = 0; i < js.size(); ++i)
      IncrementJump(js[i], src_len);
  }

  void DecrementJumps(const vector<int>& js, unsigned src_len) {
    for (unsigned i = 0; i < js.size(); ++i)
      DecrementJump(js[i], src_len);
  }

  // p(jump = dist | src_len , z)
  prob_t JumpProbability(int dist, unsigned src_len) {
    const prob_t p0 = jp0(dist, src_len);
    const double lp = src_jumps[src_len].logprob(dist, log(p0));
    prob_t q; q.logeq(lp);
    return q;
  }

  // p(rule.f_ | z) * p(rule.e_ | rule.f_ , z)
  prob_t RuleProbability(const TRule& rule) const {
    prob_t p; p.logeq(rules.logprob(rule, log(rp0(rule))));
    return p;
  }

  prob_t Likelihood() const {
    prob_t p = base;
    prob_t q; q.logeq(rules.log_crp_prob());
    p *= q;
    for (unsigned l = 1; l < src_jumps.size(); ++l) {
      if (src_jumps[l].num_customers() > 0) {
        prob_t q;
        q.logeq(src_jumps[l].log_crp_prob());
        p *= q;
      }
    }
    return p;
  }

  JumpBase jp0;
  const PhraseJointBase& rp0;
  prob_t base;
  CCRP_NoTable<TRule> rules;
  vector<CCRP_NoTable<int> > src_jumps;
};

struct BackwardEstimate {
  BackwardEstimate(const Model1& m1, const vector<WordID>& src, const vector<WordID>& trg) :
      model1_(m1), src_(src), trg_(trg) {
  }
  const prob_t& operator()(const vector<bool>& src_cov, unsigned trg_cov) const {
    assert(src_.size() == src_cov.size());
    assert(trg_cov <= trg_.size());
    prob_t& e = cache_[src_cov][trg_cov];
    if (e.is_0()) {
      if (trg_cov == trg_.size()) { e = prob_t::One(); return e; }
      vector<WordID> r(src_.size() + 1); r.clear();
      r.push_back(0);  // NULL word
      for (int i = 0; i < src_cov.size(); ++i)
        if (!src_cov[i]) r.push_back(src_[i]);
      const prob_t uniform_alignment(1.0 / r.size());
      e.logeq(log_poisson(trg_.size() - trg_cov, r.size() - 1)); // p(trg len remaining | src len remaining)
      for (unsigned j = trg_cov; j < trg_.size(); ++j) {
        prob_t p;
        for (unsigned i = 0; i < r.size(); ++i)
          p += model1_(r[i], trg_[j]);
        if (p.is_0()) {
          cerr << "ERROR: p(" << TD::Convert(trg_[j]) << " | " << TD::GetString(r) << ") = 0!\n";
          abort();
        }
        p *= uniform_alignment;
        e *= p;
      }
    }
    return e;
  }
  const Model1& model1_;
  const vector<WordID>& src_;
  const vector<WordID>& trg_;
  mutable unordered_map<vector<bool>, map<unsigned, prob_t>, boost::hash<vector<bool> > > cache_;
};

struct BackwardEstimateSym {
  BackwardEstimateSym(const Model1& m1,
                      const Model1& invm1, const vector<WordID>& src, const vector<WordID>& trg) :
      model1_(m1), invmodel1_(invm1), src_(src), trg_(trg) {
  }
  const prob_t& operator()(const vector<bool>& src_cov, unsigned trg_cov) const {
    assert(src_.size() == src_cov.size());
    assert(trg_cov <= trg_.size());
    prob_t& e = cache_[src_cov][trg_cov];
    if (e.is_0()) {
      if (trg_cov == trg_.size()) { e = prob_t::One(); return e; }
      vector<WordID> r(src_.size() + 1); r.clear();
      for (int i = 0; i < src_cov.size(); ++i)
        if (!src_cov[i]) r.push_back(src_[i]);
      r.push_back(0);  // NULL word
      const prob_t uniform_alignment(1.0 / r.size());
      e.logeq(log_poisson(trg_.size() - trg_cov, r.size() - 1)); // p(trg len remaining | src len remaining)
      for (unsigned j = trg_cov; j < trg_.size(); ++j) {
        prob_t p;
        for (unsigned i = 0; i < r.size(); ++i)
          p += model1_(r[i], trg_[j]);
        if (p.is_0()) {
          cerr << "ERROR: p(" << TD::Convert(trg_[j]) << " | " << TD::GetString(r) << ") = 0!\n";
          abort();
        }
        p *= uniform_alignment;
        e *= p;
      }
      r.pop_back();
      const prob_t inv_uniform(1.0 / (trg_.size() - trg_cov + 1.0));
      prob_t inv;
      inv.logeq(log_poisson(r.size(), trg_.size() - trg_cov));
      for (unsigned i = 0; i < r.size(); ++i) {
        prob_t p;
        for (unsigned j = trg_cov - 1; j < trg_.size(); ++j)
          p += invmodel1_(j < trg_cov ? 0 : trg_[j], r[i]);
        if (p.is_0()) {
          cerr << "ERROR: p_inv(" << TD::Convert(r[i]) << " | " << TD::GetString(trg_) << ") = 0!\n";
          abort();
        }
        p *= inv_uniform;
        inv *= p;
      }
      prob_t x = pow(e * inv, 0.5);
      e = x;
      //cerr << "Forward: " << log(e) << "\tBackward: " << log(inv) << "\t prop: " << log(x) << endl;
    }
    return e;
  }
  const Model1& model1_;
  const Model1& invmodel1_;
  const vector<WordID>& src_;
  const vector<WordID>& trg_;
  mutable unordered_map<vector<bool>, map<unsigned, prob_t>, boost::hash<vector<bool> > > cache_;
};

struct Particle {
  Particle() : weight(prob_t::One()), src_cov(), trg_cov(), prev_pos(-1) {}
  prob_t weight;
  prob_t gamma_last;
  vector<int> src_jumps;
  vector<TRulePtr> rules;
  vector<bool> src_cv;
  int src_cov;
  int trg_cov;
  int prev_pos;
};

ostream& operator<<(ostream& o, const vector<bool>& v) {
  for (int i = 0; i < v.size(); ++i)
    o << (v[i] ? '1' : '0');
  return o;
}
ostream& operator<<(ostream& o, const Particle& p) {
  o << "[cv=" << p.src_cv << "  src_cov=" << p.src_cov << " trg_cov=" << p.trg_cov << " last_pos=" << p.prev_pos << " num_rules=" << p.rules.size() << "  w=" << log(p.weight) << ']';
  return o;
}

int main(int argc, char** argv) {
  po::variables_map conf;
  InitCommandLine(argc, argv, &conf);
  const unsigned kMAX_TRG_PHRASE = conf["max_trg_phrase"].as<unsigned>();
  const unsigned kMAX_SRC_PHRASE = conf["max_src_phrase"].as<unsigned>();
  const unsigned particles = conf["particles"].as<unsigned>();
  const unsigned samples = conf["samples"].as<unsigned>();
  const unsigned rejuv_freq = conf["filter_frequency"].as<unsigned>();

  if (!conf.count("model1")) {
    cerr << argv[0] << "Please use --model1 to specify model 1 parameters\n";
    return 1;
  }
  if (conf.count("random_seed"))
    prng.reset(new MT19937(conf["random_seed"].as<uint32_t>()));
  else
    prng.reset(new MT19937);
  MT19937& rng = *prng;

  vector<vector<WordID> > corpuse, corpusf;
  set<WordID> vocabe, vocabf;
  cerr << "Reading corpus...\n";
  ReadParallelCorpus(conf["input"].as<string>(), &corpusf, &corpuse, &vocabf, &vocabe);
  cerr << "F-corpus size: " << corpusf.size() << " sentences\t (" << vocabf.size() << " word types)\n";
  cerr << "E-corpus size: " << corpuse.size() << " sentences\t (" << vocabe.size() << " word types)\n";
  assert(corpusf.size() == corpuse.size());

  const int kLHS = -TD::Convert("X");
  Model1 m1(conf["model1"].as<string>());
  Model1 invm1(conf["inverse_model1"].as<string>());

#if 0
  PhraseConditionalBase lp0(m1, conf["model1_interpolation_weight"].as<double>(), vocabe.size());
  MyConditionalModel m(lp0);
#else
  PhraseJointBase lp0(m1, conf["model1_interpolation_weight"].as<double>(), vocabe.size(), vocabf.size());
  MyJointModel m(lp0);
#endif

  MultinomialResampleFilter<Particle> filter(&rng);
  cerr << "Initializing reachability limits...\n";
  vector<Particle> ps(corpusf.size());
  vector<Reachability> reaches; reaches.reserve(corpusf.size());
  for (int ci = 0; ci < corpusf.size(); ++ci)
    reaches.push_back(Reachability(corpusf[ci].size(),
                                   corpuse[ci].size(),
                                   kMAX_SRC_PHRASE,
                                   kMAX_TRG_PHRASE));
  cerr << "Sampling...\n"; 
  vector<Particle> tmp_p(10000);  // work space
  SampleSet<prob_t> pfss;
  for (int SS=0; SS < samples; ++SS) {
    for (int ci = 0; ci < corpusf.size(); ++ci) {
      vector<int>& src = corpusf[ci];
      vector<int>& trg = corpuse[ci];
      m.DecrementRules(ps[ci].rules);
      m.DecrementJumps(ps[ci].src_jumps, src.size());

      //BackwardEstimate be(m1, src, trg);
      BackwardEstimateSym be(m1, invm1, src, trg);
      const Reachability& r = reaches[ci];
      vector<Particle> lps(particles);

      for (int pi = 0; pi < particles; ++pi) {
        Particle& p = lps[pi];
        p.src_cv.resize(src.size(), false);
      }

      bool all_complete = false;
      while(!all_complete) {
        SampleSet<prob_t> ss;

        // all particles have now been extended a bit, we will reweight them now
        if (lps[0].trg_cov > 0)
          filter(&lps);

        // loop over all particles and extend them
        bool done_nothing = true;
        for (int pi = 0; pi < particles; ++pi) {
          Particle& p = lps[pi];
          int tic = 0;
          while(p.trg_cov < trg.size() && tic < rejuv_freq) {
            ++tic;
            done_nothing = false;
            ss.clear();
            TRule x; x.lhs_ = kLHS;
            prob_t z;
            int first_uncovered = src.size();
            int last_uncovered = -1;
            for (int i = 0; i < src.size(); ++i) {
              const bool is_uncovered = !p.src_cv[i];
              if (i < first_uncovered && is_uncovered) first_uncovered = i;
              if (is_uncovered && i > last_uncovered) last_uncovered = i;
            }
            assert(last_uncovered > -1);
            assert(first_uncovered < src.size());

            for (int trg_len = 1; trg_len <= kMAX_TRG_PHRASE; ++trg_len) {
              x.e_.push_back(trg[trg_len - 1 + p.trg_cov]);
              for (int src_len = 1; src_len <= kMAX_SRC_PHRASE; ++src_len) {
                if (!r.edges[p.src_cov][p.trg_cov][src_len][trg_len]) continue;

                const int last_possible_start = last_uncovered - src_len + 1;
                assert(last_possible_start >= 0);
                //cerr << src_len << "," << trg_len << " is allowed. E=" << TD::GetString(x.e_) << endl;
                //cerr << "  first_uncovered=" << first_uncovered << "  last_possible_start=" << last_possible_start << endl;
                for (int i = first_uncovered; i <= last_possible_start; ++i) {
                  if (p.src_cv[i]) continue;
                  assert(ss.size() < tmp_p.size());  // if fails increase tmp_p size
                  Particle& np = tmp_p[ss.size()];
                  np = p;
                  x.f_.clear();
                  int gap_add = 0;
                  bool bad = false;
                  prob_t jp = prob_t::One();
                  int prev_pos = p.prev_pos;
                  for (int j = 0; j < src_len; ++j) {
                    if ((j + i + gap_add) == src.size()) { bad = true; break; }
                    while ((i+j+gap_add) < src.size() && p.src_cv[i + j + gap_add]) { ++gap_add; }
                    if ((j + i + gap_add) == src.size()) { bad = true; break; }
                    np.src_cv[i + j + gap_add] = true;
                    x.f_.push_back(src[i + j + gap_add]);
                    jp *= m.JumpProbability(i + j + gap_add - prev_pos, src.size());
                    int jump = i + j + gap_add - prev_pos;
                    assert(jump != 0);
                    np.src_jumps.push_back(jump);
                    prev_pos = i + j + gap_add;
                  }
                  if (bad) continue;
                  np.prev_pos = prev_pos;
                  np.src_cov += x.f_.size();
                  np.trg_cov += x.e_.size();
                  if (x.f_.size() != src_len) continue;
                  prob_t rp = m.RuleProbability(x);
                  np.gamma_last = rp * jp;
                  const prob_t u = pow(np.gamma_last * be(np.src_cv, np.trg_cov), 0.2);
                  //cerr << "**rule=" << x << endl;
                  //cerr << "  u=" << log(u) << "  rule=" << rp << " jump=" << jp << endl;
                  ss.add(u);
                  np.rules.push_back(TRulePtr(new TRule(x)));
                  z += u;

                  const bool completed = (p.trg_cov == trg.size());
                  if (completed) {
                    int last_jump = src.size() - p.prev_pos;
                    assert(last_jump > 0);
                    p.src_jumps.push_back(last_jump);
                    p.weight *= m.JumpProbability(last_jump, src.size());
                  }
                }
              }
            }
            cerr << "number of edges to consider: " << ss.size() << endl;
            const int sampled = rng.SelectSample(ss);
            prob_t q_n = ss[sampled] / z;
            p = tmp_p[sampled];
            //m.IncrementRule(*p.rules.back());
            p.weight *= p.gamma_last / q_n;
            cerr << "[w=" << log(p.weight) << "]\tsampled rule: " << p.rules.back()->AsString() << endl;
            cerr << p << endl;
          }
        } // loop over particles (pi = 0 .. particles)
        if (done_nothing) all_complete = true;
      }
      pfss.clear();
      for (int i = 0; i < lps.size(); ++i)
        pfss.add(lps[i].weight);
      const int sampled = rng.SelectSample(pfss);
      ps[ci] = lps[sampled];
      m.IncrementRules(lps[sampled].rules);
      m.IncrementJumps(lps[sampled].src_jumps, src.size());
      for (int i = 0; i < lps[sampled].rules.size(); ++i) { cerr << "S:\t" << lps[sampled].rules[i]->AsString() << "\n"; }
      cerr << "tmp-LLH: " << log(m.Likelihood()) << endl;
    }
    cerr << "LLH: " << log(m.Likelihood()) << endl;
    for (int sni = 0; sni < 5; ++sni) {
      for (int i = 0; i < ps[sni].rules.size(); ++i) { cerr << "\t" << ps[sni].rules[i]->AsString() << endl; }
    }
  }
  return 0;
}