summaryrefslogtreecommitdiff
path: root/gi/pf/pfbrat.cc
blob: 832f22cfb838b02025c5e15e4185ff5c3311127d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
#include <iostream>
#include <tr1/memory>
#include <queue>

#include <boost/functional.hpp>
#include <boost/multi_array.hpp>
#include <boost/program_options.hpp>
#include <boost/program_options/variables_map.hpp>

#include "viterbi.h"
#include "hg.h"
#include "trule.h"
#include "tdict.h"
#include "filelib.h"
#include "dict.h"
#include "sampler.h"
#include "ccrp_nt.h"
#include "cfg_wfst_composer.h"

using namespace std;
using namespace tr1;
namespace po = boost::program_options;

static unsigned kMAX_SRC_PHRASE;
static unsigned kMAX_TRG_PHRASE;
struct FSTState;

double log_poisson(unsigned x, const double& lambda) {
  assert(lambda > 0.0);
  return log(lambda) * x - lgamma(x + 1) - lambda;
}

struct ConditionalBase {
  explicit ConditionalBase(const double m1mixture, const unsigned vocab_e_size, const string& model1fname) :
      kM1MIXTURE(m1mixture),
      kUNIFORM_MIXTURE(1.0 - m1mixture),
      kUNIFORM_TARGET(1.0 / vocab_e_size),
      kNULL(TD::Convert("<eps>")) {
    assert(m1mixture >= 0.0 && m1mixture <= 1.0);
    assert(vocab_e_size > 0);
    LoadModel1(model1fname);
  }

  void LoadModel1(const string& fname) {
    cerr << "Loading Model 1 parameters from " << fname << " ..." << endl;
    ReadFile rf(fname);
    istream& in = *rf.stream();
    string line;
    unsigned lc = 0;
    while(getline(in, line)) {
      ++lc;
      int cur = 0;
      int start = 0;
      while(cur < line.size() && line[cur] != ' ') { ++cur; }
      assert(cur != line.size());
      line[cur] = 0;
      const WordID src = TD::Convert(&line[0]);
      ++cur;
      start = cur;
      while(cur < line.size() && line[cur] != ' ') { ++cur; }
      assert(cur != line.size());
      line[cur] = 0;
      WordID trg = TD::Convert(&line[start]);
      const double logprob = strtod(&line[cur + 1], NULL);
      if (src >= ttable.size()) ttable.resize(src + 1);
      ttable[src][trg].logeq(logprob);
    }
    cerr << "  read " << lc << " parameters.\n";
  }

  // return logp0 of rule.e_ | rule.f_
  prob_t operator()(const TRule& rule) const {
    const int flen = rule.f_.size();
    const int elen = rule.e_.size();
    prob_t uniform_src_alignment; uniform_src_alignment.logeq(-log(flen + 1));
    prob_t p;
    p.logeq(log_poisson(elen, flen + 0.01));       // elen | flen          ~Pois(flen + 0.01)
    for (int i = 0; i < elen; ++i) {               // for each position i in e-RHS
      const WordID trg = rule.e_[i];
      prob_t tp = prob_t::Zero();
      for (int j = -1; j < flen; ++j) {
        const WordID src = j < 0 ? kNULL : rule.f_[j];
        const map<WordID, prob_t>::const_iterator it = ttable[src].find(trg);
        if (it != ttable[src].end()) {
          tp += kM1MIXTURE * it->second;
        }
        tp += kUNIFORM_MIXTURE * kUNIFORM_TARGET;
      }
      tp *= uniform_src_alignment;                 //     draw a_i         ~uniform
      p *= tp;                                     //     draw e_i         ~Model1(f_a_i) / uniform
    }
    return p;
  }

  const prob_t kM1MIXTURE;  // Model 1 mixture component
  const prob_t kUNIFORM_MIXTURE; // uniform mixture component
  const prob_t kUNIFORM_TARGET;
  const WordID kNULL;
  vector<map<WordID, prob_t> > ttable;
};

void InitCommandLine(int argc, char** argv, po::variables_map* conf) {
  po::options_description opts("Configuration options");
  opts.add_options()
        ("samples,s",po::value<unsigned>()->default_value(1000),"Number of samples")
        ("input,i",po::value<string>(),"Read parallel data from")
        ("max_src_phrase",po::value<unsigned>()->default_value(3),"Maximum length of source language phrases")
        ("max_trg_phrase",po::value<unsigned>()->default_value(3),"Maximum length of target language phrases")
        ("model1,m",po::value<string>(),"Model 1 parameters (used in base distribution)")
        ("model1_interpolation_weight",po::value<double>()->default_value(0.95),"Mixing proportion of model 1 with uniform target distribution")
        ("random_seed,S",po::value<uint32_t>(), "Random seed");
  po::options_description clo("Command line options");
  clo.add_options()
        ("config", po::value<string>(), "Configuration file")
        ("help,h", "Print this help message and exit");
  po::options_description dconfig_options, dcmdline_options;
  dconfig_options.add(opts);
  dcmdline_options.add(opts).add(clo);
  
  po::store(parse_command_line(argc, argv, dcmdline_options), *conf);
  if (conf->count("config")) {
    ifstream config((*conf)["config"].as<string>().c_str());
    po::store(po::parse_config_file(config, dconfig_options), *conf);
  }
  po::notify(*conf);

  if (conf->count("help") || (conf->count("input") == 0)) {
    cerr << dcmdline_options << endl;
    exit(1);
  }
}

void ReadParallelCorpus(const string& filename,
                vector<vector<WordID> >* f,
                vector<vector<int> >* e,
                set<int>* vocab_f,
                set<int>* vocab_e) {
  f->clear();
  e->clear();
  vocab_f->clear();
  vocab_e->clear();
  istream* in;
  if (filename == "-")
    in = &cin;
  else
    in = new ifstream(filename.c_str());
  assert(*in);
  string line;
  const WordID kDIV = TD::Convert("|||");
  vector<WordID> tmp;
  while(*in) {
    getline(*in, line);
    if (line.empty() && !*in) break;
    e->push_back(vector<int>());
    f->push_back(vector<int>());
    vector<int>& le = e->back();
    vector<int>& lf = f->back();
    tmp.clear();
    TD::ConvertSentence(line, &tmp);
    bool isf = true;
    for (unsigned i = 0; i < tmp.size(); ++i) {
      const int cur = tmp[i];
      if (isf) {
        if (kDIV == cur) { isf = false; } else {
          lf.push_back(cur);
          vocab_f->insert(cur);
        }
      } else {
        assert(cur != kDIV);
        le.push_back(cur);
        vocab_e->insert(cur);
      }
    }
    assert(isf == false);
  }
  if (in != &cin) delete in;
}

struct UniphraseLM {
  UniphraseLM(const vector<vector<int> >& corpus,
              const set<int>& vocab,
              const po::variables_map& conf) :
    phrases_(1,1),
    gen_(1,1),
    corpus_(corpus),
    uniform_word_(1.0 / vocab.size()),
    gen_p0_(0.5),
    p_end_(0.5),
    use_poisson_(conf.count("poisson_length") > 0) {}

  void ResampleHyperparameters(MT19937* rng) {
    phrases_.resample_hyperparameters(rng);
    gen_.resample_hyperparameters(rng);
    cerr << " " << phrases_.alpha();
  }

  CCRP_NoTable<vector<int> > phrases_;
  CCRP_NoTable<bool> gen_;
  vector<vector<bool> > z_;   // z_[i] is there a phrase boundary after the ith word
  const vector<vector<int> >& corpus_;
  const double uniform_word_;
  const double gen_p0_;
  const double p_end_; // in base length distribution, p of the end of a phrase
  const bool use_poisson_;
};

struct Reachability {
  boost::multi_array<bool, 4> edges;  // edges[src_covered][trg_covered][x][trg_delta] is this edge worth exploring?
  boost::multi_array<short, 2> max_src_delta; // msd[src_covered][trg_covered] -- the largest src delta that's valid

  Reachability(int srclen, int trglen, int src_max_phrase_len, int trg_max_phrase_len) :
      edges(boost::extents[srclen][trglen][src_max_phrase_len+1][trg_max_phrase_len+1]),
      max_src_delta(boost::extents[srclen][trglen]) {
    ComputeReachability(srclen, trglen, src_max_phrase_len, trg_max_phrase_len);
  }

 private:
  struct SState {
    SState() : prev_src_covered(), prev_trg_covered() {}
    SState(int i, int j) : prev_src_covered(i), prev_trg_covered(j) {}
    int prev_src_covered;
    int prev_trg_covered;
  };

  struct NState {
    NState() : next_src_covered(), next_trg_covered() {}
    NState(int i, int j) : next_src_covered(i), next_trg_covered(j) {}
    int next_src_covered;
    int next_trg_covered;
  };

  void ComputeReachability(int srclen, int trglen, int src_max_phrase_len, int trg_max_phrase_len) {
    typedef boost::multi_array<vector<SState>, 2> array_type;
    array_type a(boost::extents[srclen + 1][trglen + 1]);
    a[0][0].push_back(SState());
    for (int i = 0; i < srclen; ++i) {
      for (int j = 0; j < trglen; ++j) {
        if (a[i][j].size() == 0) continue;
        const SState prev(i,j);
        for (int k = 1; k <= src_max_phrase_len; ++k) {
          if ((i + k) > srclen) continue;
          for (int l = 1; l <= trg_max_phrase_len; ++l) {
            if ((j + l) > trglen) continue;
            a[i + k][j + l].push_back(prev);
          }
        }
      }
    }
    a[0][0].clear();
    cerr << "Final cell contains " << a[srclen][trglen].size() << " back pointers\n";
    assert(a[srclen][trglen].size() > 0);

    typedef boost::multi_array<bool, 2> rarray_type;
    rarray_type r(boost::extents[srclen + 1][trglen + 1]);
//    typedef boost::multi_array<vector<NState>, 2> narray_type;
//    narray_type b(boost::extents[srclen + 1][trglen + 1]);
    r[srclen][trglen] = true;
    for (int i = srclen; i >= 0; --i) {
      for (int j = trglen; j >= 0; --j) {
        vector<SState>& prevs = a[i][j];
        if (!r[i][j]) { prevs.clear(); }
//        const NState nstate(i,j);
        for (int k = 0; k < prevs.size(); ++k) {
          r[prevs[k].prev_src_covered][prevs[k].prev_trg_covered] = true;
          int src_delta = i - prevs[k].prev_src_covered;
          edges[prevs[k].prev_src_covered][prevs[k].prev_trg_covered][src_delta][j - prevs[k].prev_trg_covered] = true;
          short &msd = max_src_delta[prevs[k].prev_src_covered][prevs[k].prev_trg_covered];
          if (src_delta > msd) msd = src_delta;
//          b[prevs[k].prev_src_covered][prevs[k].prev_trg_covered].push_back(nstate);
        }
      }
    }
    assert(!edges[0][0][1][0]);
    assert(!edges[0][0][0][1]);
    assert(!edges[0][0][0][0]);
    cerr << "  MAX SRC DELTA[0][0] = " << max_src_delta[0][0] << endl;
    assert(max_src_delta[0][0] > 0);
    //cerr << "First cell contains " << b[0][0].size() << " forward pointers\n";
    //for (int i = 0; i < b[0][0].size(); ++i) {
    //  cerr << "  -> (" << b[0][0][i].next_src_covered << "," << b[0][0][i].next_trg_covered << ")\n";
    //}
  }
};

ostream& operator<<(ostream& os, const FSTState& q);
struct FSTState {
  explicit FSTState(int src_size) :
      trg_covered_(),
      src_covered_(),
      src_coverage_(src_size) {}

  FSTState(short trg_covered, short src_covered, const vector<bool>& src_coverage, const vector<short>& src_prefix) :
      trg_covered_(trg_covered),
      src_covered_(src_covered),
      src_coverage_(src_coverage),
      src_prefix_(src_prefix) {
    if (src_coverage_.size() == src_covered) {
      assert(src_prefix.size() == 0);
    }
  }

  // if we extend by the word at src_position, what are
  // the next states that are reachable and lie on a valid
  // path to the final state?
  vector<FSTState> Extensions(int src_position, int src_len, int trg_len, const Reachability& r) const {
    assert(src_position < src_coverage_.size());
    if (src_coverage_[src_position]) {
      cerr << "Trying to extend " << *this << " with position " << src_position << endl;
      abort();
    }
    vector<bool> ncvg = src_coverage_;
    ncvg[src_position] = true;

    vector<FSTState> res;
    const int trg_remaining = trg_len - trg_covered_;
    if (trg_remaining <= 0) {
      cerr << "Target appears to have been covered: " << *this << " (trg_len=" << trg_len << ",trg_covered=" << trg_covered_ << ")" << endl;
      abort();
    }
    const int src_remaining = src_len - src_covered_;
    if (src_remaining <= 0) {
      cerr << "Source appears to have been covered: " << *this << endl;
      abort();
    }

    for (int tc = 1; tc <= kMAX_TRG_PHRASE; ++tc) {
      if (r.edges[src_covered_][trg_covered_][src_prefix_.size() + 1][tc]) {
        int nc = src_prefix_.size() + 1 + src_covered_;
        res.push_back(FSTState(trg_covered_ + tc, nc, ncvg, vector<short>()));
      }
    }

    if ((src_prefix_.size() + 1) < r.max_src_delta[src_covered_][trg_covered_]) {
      vector<short> nsp = src_prefix_;
      nsp.push_back(src_position);
      res.push_back(FSTState(trg_covered_, src_covered_, ncvg, nsp));
    }

    if (res.size() == 0) {
      cerr << *this << " can't be extended!\n";
      abort();
    }
    return res;
  }

  short trg_covered_, src_covered_;
  vector<bool> src_coverage_;
  vector<short> src_prefix_;
};
bool operator<(const FSTState& q, const FSTState& r) {
  if (q.trg_covered_ != r.trg_covered_) return q.trg_covered_ < r.trg_covered_;
  if (q.src_covered_!= r.src_covered_) return q.src_covered_ < r.src_covered_;
  if (q.src_coverage_ != r.src_coverage_) return q.src_coverage_ < r.src_coverage_;
  return q.src_prefix_ < r.src_prefix_;
}

ostream& operator<<(ostream& os, const FSTState& q) {
  os << "[" << q.trg_covered_ << " : ";
  for (int i = 0; i < q.src_coverage_.size(); ++i)
    os << q.src_coverage_[i];
  os << " : <";
  for (int i = 0; i < q.src_prefix_.size(); ++i) {
    if (i != 0) os << ' ';
    os << q.src_prefix_[i];
  }
  return os << ">]";
}

struct MyModel {
  MyModel(ConditionalBase& rcp0) : rp0(rcp0) {}
  typedef unordered_map<vector<WordID>, CCRP_NoTable<TRule>, boost::hash<vector<WordID> > > SrcToRuleCRPMap;

  void DecrementRule(const TRule& rule) {
    SrcToRuleCRPMap::iterator it = rules.find(rule.f_);
    assert(it != rules.end());
    it->second.decrement(rule);
    if (it->second.num_customers() == 0) rules.erase(it);
  }

  void IncrementRule(const TRule& rule) {
    SrcToRuleCRPMap::iterator it = rules.find(rule.f_);
    if (it == rules.end()) {
      CCRP_NoTable<TRule> crp(1,1);
      it = rules.insert(make_pair(rule.f_, crp)).first;
    }
    it->second.increment(rule);
  }

  // conditioned on rule.f_
  prob_t RuleConditionalProbability(const TRule& rule) const {
    const prob_t base = rp0(rule);
    SrcToRuleCRPMap::const_iterator it = rules.find(rule.f_);
    if (it == rules.end()) {
      return base;
    } else {
      const double lp = it->second.logprob(rule, log(base));
      prob_t q; q.logeq(lp);
      return q;
    }
  }

  const ConditionalBase& rp0;
  SrcToRuleCRPMap rules;
};

struct MyFST : public WFST {
  MyFST(const vector<WordID>& ssrc, const vector<WordID>& strg, MyModel* m) :
      src(ssrc), trg(strg),
      r(src.size(),trg.size(),kMAX_SRC_PHRASE, kMAX_TRG_PHRASE),
      model(m) {
    FSTState in(src.size());
    cerr << " INIT: " << in << endl;
    init = GetNode(in);
    for (int i = 0; i < in.src_coverage_.size(); ++i) in.src_coverage_[i] = true;
    in.src_covered_ = src.size();
    in.trg_covered_ = trg.size();
    cerr << "FINAL: " << in << endl;
    final = GetNode(in);
  }
  virtual const WFSTNode* Final() const;
  virtual const WFSTNode* Initial() const;

  const WFSTNode* GetNode(const FSTState& q);
  map<FSTState, boost::shared_ptr<WFSTNode> > m;
  const vector<WordID>& src;
  const vector<WordID>& trg;
  Reachability r;
  const WFSTNode* init;
  const WFSTNode* final;
  MyModel* model;
};

struct MyNode : public WFSTNode {
  MyNode(const FSTState& q, MyFST* fst) : state(q), container(fst) {}
  virtual vector<pair<const WFSTNode*, TRulePtr> > ExtendInput(unsigned srcindex) const;
  const FSTState state;
  mutable MyFST* container;
};

vector<pair<const WFSTNode*, TRulePtr> > MyNode::ExtendInput(unsigned srcindex) const {
  cerr << "EXTEND " << state << " with " << srcindex << endl;
  vector<FSTState> ext = state.Extensions(srcindex, container->src.size(), container->trg.size(), container->r);
  vector<pair<const WFSTNode*,TRulePtr> > res(ext.size());
  for (unsigned i = 0; i < ext.size(); ++i) {
    res[i].first = container->GetNode(ext[i]);
    if (ext[i].src_prefix_.size() == 0) {
      const unsigned trg_from = state.trg_covered_;
      const unsigned trg_to = ext[i].trg_covered_;
      const unsigned prev_prfx_size = state.src_prefix_.size();
      res[i].second.reset(new TRule);
      res[i].second->lhs_ = -TD::Convert("X");
      vector<WordID>& src = res[i].second->f_;
      vector<WordID>& trg = res[i].second->e_;
      src.resize(prev_prfx_size + 1);
      for (unsigned j = 0; j < prev_prfx_size; ++j)
        src[j] = container->src[state.src_prefix_[j]];
      src[prev_prfx_size] = container->src[srcindex];
      for (unsigned j = trg_from; j < trg_to; ++j)
        trg.push_back(container->trg[j]);
      res[i].second->scores_.set_value(FD::Convert("Proposal"), log(container->model->RuleConditionalProbability(*res[i].second)));
    }
  }
  return res;
}

const WFSTNode* MyFST::GetNode(const FSTState& q) {
  boost::shared_ptr<WFSTNode>& res = m[q];
  if (!res) {
    res.reset(new MyNode(q, this));
  }
  return &*res;
}

const WFSTNode* MyFST::Final() const {
  return final;
}

const WFSTNode* MyFST::Initial() const {
  return init;
}

int main(int argc, char** argv) {
  po::variables_map conf;
  InitCommandLine(argc, argv, &conf);
  kMAX_TRG_PHRASE = conf["max_trg_phrase"].as<unsigned>();
  kMAX_SRC_PHRASE = conf["max_src_phrase"].as<unsigned>();

  if (!conf.count("model1")) {
    cerr << argv[0] << "Please use --model1 to specify model 1 parameters\n";
    return 1;
  }
  boost::shared_ptr<MT19937> prng;
  if (conf.count("random_seed"))
    prng.reset(new MT19937(conf["random_seed"].as<uint32_t>()));
  else
    prng.reset(new MT19937);
  MT19937& rng = *prng;

  vector<vector<int> > corpuse, corpusf;
  set<int> vocabe, vocabf;
  ReadParallelCorpus(conf["input"].as<string>(), &corpusf, &corpuse, &vocabf, &vocabe);
  cerr << "f-Corpus size: " << corpusf.size() << " sentences\n";
  cerr << "f-Vocabulary size: " << vocabf.size() << " types\n";
  cerr << "f-Corpus size: " << corpuse.size() << " sentences\n";
  cerr << "f-Vocabulary size: " << vocabe.size() << " types\n";
  assert(corpusf.size() == corpuse.size());

  ConditionalBase lp0(conf["model1_interpolation_weight"].as<double>(),
                      vocabe.size(),
                      conf["model1"].as<string>());
  MyModel m(lp0);

  TRule x("[X] ||| kAnwntR myN ||| at the convent ||| 0");
  m.IncrementRule(x);
  TRule y("[X] ||| nY dyN ||| gave ||| 0");
  m.IncrementRule(y);


  MyFST fst(corpusf[0], corpuse[0], &m);
  ifstream in("./kimura.g");
  assert(in);
  CFG_WFSTComposer comp(fst);
  Hypergraph hg;
  bool succeed = comp.Compose(&in, &hg);
  hg.PrintGraphviz();
  if (succeed) { cerr << "SUCCESS.\n"; } else { cerr << "FAILURE REPORTED.\n"; }

#if 0
  ifstream in2("./amnabooks.g");
  assert(in2);
  MyFST fst2(corpusf[1], corpuse[1], &m);
  CFG_WFSTComposer comp2(fst2);
  Hypergraph hg2;
  bool succeed2 = comp2.Compose(&in2, &hg2);
  if (succeed2) { cerr << "SUCCESS.\n"; } else { cerr << "FAILURE REPORTED.\n"; }
#endif

  SparseVector<double> w; w.set_value(FD::Convert("Proposal"), 1.0);
  hg.Reweight(w);
  cerr << ViterbiFTree(hg) << endl;
  return 0;
}