summaryrefslogtreecommitdiff
path: root/gi/pf/hierolm.cc
blob: afb12fefee11f9fd45cfb34ef4321e1238b8f974 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
#include <iostream>
#include <tr1/memory>
#include <queue>

#include <boost/functional.hpp>
#include <boost/program_options.hpp>
#include <boost/program_options/variables_map.hpp>

#include "inside_outside.h"
#include "hg.h"
#include "bottom_up_parser.h"
#include "fdict.h"
#include "grammar.h"
#include "m.h"
#include "trule.h"
#include "tdict.h"
#include "filelib.h"
#include "dict.h"
#include "sampler.h"
#include "ccrp.h"
#include "ccrp_onetable.h"

using namespace std;
using namespace tr1;
namespace po = boost::program_options;

shared_ptr<MT19937> prng;

void InitCommandLine(int argc, char** argv, po::variables_map* conf) {
  po::options_description opts("Configuration options");
  opts.add_options()
        ("samples,s",po::value<unsigned>()->default_value(1000),"Number of samples")
        ("input,i",po::value<string>(),"Read parallel data from")
        ("random_seed,S",po::value<uint32_t>(), "Random seed");
  po::options_description clo("Command line options");
  clo.add_options()
        ("config", po::value<string>(), "Configuration file")
        ("help,h", "Print this help message and exit");
  po::options_description dconfig_options, dcmdline_options;
  dconfig_options.add(opts);
  dcmdline_options.add(opts).add(clo);
  
  po::store(parse_command_line(argc, argv, dcmdline_options), *conf);
  if (conf->count("config")) {
    ifstream config((*conf)["config"].as<string>().c_str());
    po::store(po::parse_config_file(config, dconfig_options), *conf);
  }
  po::notify(*conf);

  if (conf->count("help") || (conf->count("input") == 0)) {
    cerr << dcmdline_options << endl;
    exit(1);
  }
}

void ReadCorpus(const string& filename,
                vector<vector<WordID> >* e,
                set<WordID>* vocab_e) {
  e->clear();
  vocab_e->clear();
  istream* in;
  if (filename == "-")
    in = &cin;
  else
    in = new ifstream(filename.c_str());
  assert(*in);
  string line;
  while(*in) {
    getline(*in, line);
    if (line.empty() && !*in) break;
    e->push_back(vector<int>());
    vector<int>& le = e->back();
    TD::ConvertSentence(line, &le);
    for (unsigned i = 0; i < le.size(); ++i)
      vocab_e->insert(le[i]);
  }
  if (in != &cin) delete in;
}

struct Grid {
  // a b c d e
  // 0 - 0 - -
  vector<int> grid;
};

struct BaseRuleModel {
  explicit BaseRuleModel(unsigned term_size,
                         unsigned nonterm_size = 1) :
      unif_term(1.0 / term_size),
      unif_nonterm(1.0 / nonterm_size) {}
  prob_t operator()(const TRule& r) const {
    prob_t p; p.logeq(Md::log_poisson(1.0, r.f_.size()));
    const prob_t term_prob((2.0 + 0.01*r.f_.size()) / (r.f_.size() + 2));
    const prob_t nonterm_prob(1.0 - term_prob.as_float());
    for (unsigned i = 0; i < r.f_.size(); ++i) {
      if (r.f_[i] <= 0) {     // nonterminal
        p *= nonterm_prob;
        p *= unif_nonterm;
      } else {                // terminal
        p *= term_prob;
        p *= unif_term;
      }
    }
    return p;
  }
  const prob_t unif_term, unif_nonterm;
};

struct HieroLMModel {
  explicit HieroLMModel(unsigned vocab_size) : p0(vocab_size), x(1,1,1,1) {}

  prob_t Prob(const TRule& r) const {
    return x.probT<prob_t>(r, p0(r));
  }

  int Increment(const TRule& r, MT19937* rng) {
    return x.incrementT<prob_t>(r, p0(r), rng);
    // return x.increment(r);
  }

  int Decrement(const TRule& r, MT19937* rng) {
    return x.decrement(r, rng);
    //return x.decrement(r);
  }

  prob_t Likelihood() const {
    prob_t p;
    p.logeq(x.log_crp_prob());
    for (CCRP<TRule>::const_iterator it = x.begin(); it != x.end(); ++it) {
      prob_t tp = p0(it->first);
      tp.poweq(it->second.table_counts_.size());
      p *= tp;
    }
    //for (CCRP_OneTable<TRule>::const_iterator it = x.begin(); it != x.end(); ++it)
    //    p *= p0(it->first);
    return p;
  }

  void ResampleHyperparameters(MT19937* rng) {
    x.resample_hyperparameters(rng);
    cerr << " d=" << x.discount() << ", alpha=" << x.concentration() << endl;
  }

  const BaseRuleModel p0;
  CCRP<TRule> x;
  //CCRP_OneTable<TRule> x;
};

vector<GrammarIter* > tofreelist;

HieroLMModel* plm;

struct NPGrammarIter : public GrammarIter, public RuleBin {
  NPGrammarIter() : arity() { tofreelist.push_back(this); }
  NPGrammarIter(const TRulePtr& inr, const int a, int symbol) : arity(a + (symbol < 0 ? 1 : 0)) {
    if (inr) {
      r.reset(new TRule(*inr));
    } else {
      static const int kLHS = -TD::Convert("X");
      r.reset(new TRule);
      r->lhs_ = kLHS;
    }
    TRule& rr = *r;
    rr.f_.push_back(symbol);
    rr.e_.push_back(symbol < 0 ? (1-int(arity)) : symbol);
    tofreelist.push_back(this);
  }
  virtual int GetNumRules() const {
    if (r) return 1; else return 0;
  }
  virtual TRulePtr GetIthRule(int) const {
    return r;
  }
  virtual int Arity() const {
    return arity;
  }
  virtual const RuleBin* GetRules() const {
    if (!r) return NULL; else return this;
  }
  virtual const GrammarIter* Extend(int symbol) const {
    return new NPGrammarIter(r, arity, symbol);
  }
  const unsigned char arity;
  TRulePtr r;
};

struct NPGrammar : public Grammar {
  virtual const GrammarIter* GetRoot() const {
    return new NPGrammarIter;
  }
};

void SampleDerivation(const Hypergraph& hg, MT19937* rng, vector<unsigned>* sampled_deriv, HieroLMModel* plm) {
  HieroLMModel& lm = *plm;
  vector<prob_t> node_probs;
  const prob_t total_prob = Inside<prob_t, EdgeProb>(hg, &node_probs);
  queue<unsigned> q;
  q.push(hg.nodes_.size() - 3);
  while(!q.empty()) {
    unsigned cur_node_id = q.front();
//    cerr << "NODE=" << cur_node_id << endl;
    q.pop();
    const Hypergraph::Node& node = hg.nodes_[cur_node_id];
    const unsigned num_in_edges = node.in_edges_.size();
    unsigned sampled_edge = 0;
    if (num_in_edges == 1) {
      sampled_edge = node.in_edges_[0];
    } else {
      //prob_t z;
      assert(num_in_edges > 1);
      SampleSet<prob_t> ss;
      for (unsigned j = 0; j < num_in_edges; ++j) {
        const Hypergraph::Edge& edge = hg.edges_[node.in_edges_[j]];
        prob_t p = edge.edge_prob_;
        for (unsigned k = 0; k < edge.tail_nodes_.size(); ++k)
          p *= node_probs[edge.tail_nodes_[k]];
        ss.add(p);
//        cerr << log(ss[j]) << " ||| " << edge.rule_->AsString() << endl;
        //z += p;
      }
//      for (unsigned j = 0; j < num_in_edges; ++j) {
//        const Hypergraph::Edge& edge = hg.edges_[node.in_edges_[j]];
//        cerr << exp(log(ss[j] / z)) << " ||| " << edge.rule_->AsString() << endl;
//      }
//      cerr << " --- \n";
      sampled_edge = node.in_edges_[rng->SelectSample(ss)];
    }
    sampled_deriv->push_back(sampled_edge);
    const Hypergraph::Edge& edge = hg.edges_[sampled_edge];
    for (unsigned j = 0; j < edge.tail_nodes_.size(); ++j) {
      q.push(edge.tail_nodes_[j]);
    }
  }
  for (unsigned i = 0; i < sampled_deriv->size(); ++i) {
    cerr << *hg.edges_[(*sampled_deriv)[i]].rule_ << endl;
  }
}

void IncrementDerivation(const Hypergraph& hg, const vector<unsigned>& d, HieroLMModel* plm, MT19937* rng) {
  for (unsigned i = 0; i < d.size(); ++i)
    plm->Increment(*hg.edges_[d[i]].rule_, rng);
}

void DecrementDerivation(const Hypergraph& hg, const vector<unsigned>& d, HieroLMModel* plm, MT19937* rng) {
  for (unsigned i = 0; i < d.size(); ++i)
    plm->Decrement(*hg.edges_[d[i]].rule_, rng);
}

int main(int argc, char** argv) {
  po::variables_map conf;
  vector<GrammarPtr> grammars;
  grammars.push_back(GrammarPtr(new NPGrammar));

  InitCommandLine(argc, argv, &conf);
  const unsigned samples = conf["samples"].as<unsigned>();

  if (conf.count("random_seed"))
    prng.reset(new MT19937(conf["random_seed"].as<uint32_t>()));
  else
    prng.reset(new MT19937);
  MT19937& rng = *prng;

  vector<vector<WordID> > corpuse;
  set<WordID> vocabe;
  cerr << "Reading corpus...\n";
  ReadCorpus(conf["input"].as<string>(), &corpuse, &vocabe);
  cerr << "E-corpus size: " << corpuse.size() << " sentences\t (" << vocabe.size() << " word types)\n";
  HieroLMModel lm(vocabe.size());

  plm = &lm;
  ExhaustiveBottomUpParser parser("X", grammars);

  Hypergraph hg;
  const int kX = -TD::Convert("X");
  const int kLP = FD::Convert("LogProb");
  SparseVector<double> v; v.set_value(kLP, 1.0);
  vector<vector<unsigned> > derivs(corpuse.size());
  for (int SS=0; SS < samples; ++SS) {
    for (int ci = 0; ci < corpuse.size(); ++ci) {
      vector<int>& src = corpuse[ci];
      Lattice lat(src.size());
      for (unsigned i = 0; i < src.size(); ++i)
        lat[i].push_back(LatticeArc(src[i], 0.0, 1));
      cerr << TD::GetString(src) << endl;
      hg.clear();
      parser.Parse(lat, &hg);  // exhaustive parse
      DecrementDerivation(hg, derivs[ci], &lm, &rng);
      for (unsigned i = 0; i < hg.edges_.size(); ++i) {
        TRule& r = *hg.edges_[i].rule_;
        if (r.lhs_ == kX)
          hg.edges_[i].edge_prob_ = lm.Prob(r);
      }
      vector<unsigned> d;
      SampleDerivation(hg, &rng, &d, &lm);
      derivs[ci] = d;
      IncrementDerivation(hg, derivs[ci], &lm, &rng);
      if (tofreelist.size() > 100000) {
        cerr << "Freeing ... ";
        for (unsigned i = 0; i < tofreelist.size(); ++i)
          delete tofreelist[i];
        tofreelist.clear();
        cerr << "Freed.\n";
      }
    }
    cerr << "LLH=" << lm.Likelihood() << endl;
  }
  return 0;
}