summaryrefslogtreecommitdiff
path: root/gi/pf/condnaive.cc
blob: 419731aca3d065e4e4575793e68368732a16e67b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
#include <iostream>
#include <tr1/memory>
#include <queue>

#include <boost/multi_array.hpp>
#include <boost/program_options.hpp>
#include <boost/program_options/variables_map.hpp>

#include "base_distributions.h"
#include "monotonic_pseg.h"
#include "conditional_pseg.h"
#include "trule.h"
#include "tdict.h"
#include "filelib.h"
#include "dict.h"
#include "sampler.h"
#include "ccrp_nt.h"
#include "corpus.h"

using namespace std;
using namespace std::tr1;
namespace po = boost::program_options;

static unsigned kMAX_SRC_PHRASE;
static unsigned kMAX_TRG_PHRASE;

void InitCommandLine(int argc, char** argv, po::variables_map* conf) {
  po::options_description opts("Configuration options");
  opts.add_options()
        ("samples,s",po::value<unsigned>()->default_value(1000),"Number of samples")
        ("input,i",po::value<string>(),"Read parallel data from")
        ("max_src_phrase",po::value<unsigned>()->default_value(4),"Maximum length of source language phrases")
        ("max_trg_phrase",po::value<unsigned>()->default_value(4),"Maximum length of target language phrases")
        ("model1,m",po::value<string>(),"Model 1 parameters (used in base distribution)")
        ("model1_interpolation_weight",po::value<double>()->default_value(0.95),"Mixing proportion of model 1 with uniform target distribution")
        ("random_seed,S",po::value<uint32_t>(), "Random seed");
  po::options_description clo("Command line options");
  clo.add_options()
        ("config", po::value<string>(), "Configuration file")
        ("help,h", "Print this help message and exit");
  po::options_description dconfig_options, dcmdline_options;
  dconfig_options.add(opts);
  dcmdline_options.add(opts).add(clo);
  
  po::store(parse_command_line(argc, argv, dcmdline_options), *conf);
  if (conf->count("config")) {
    ifstream config((*conf)["config"].as<string>().c_str());
    po::store(po::parse_config_file(config, dconfig_options), *conf);
  }
  po::notify(*conf);

  if (conf->count("help") || (conf->count("input") == 0)) {
    cerr << dcmdline_options << endl;
    exit(1);
  }
}

boost::shared_ptr<MT19937> prng;

struct ModelAndData {
  explicit ModelAndData(ConditionalParallelSegementationModel<PhraseConditionalBase>& m, const vector<vector<int> >& ce, const vector<vector<int> >& cf, const set<int>& ve, const set<int>& vf) :
     model(m),
     rng(&*prng),
     corpuse(ce),
     corpusf(cf),
     vocabe(ve),
     vocabf(vf),
     mh_samples(),
     mh_rejects(),
     kX(-TD::Convert("X")),
     derivations(corpuse.size()) {}

  void ResampleHyperparameters() {
  }

  void InstantiateRule(const pair<short,short>& from,
                       const pair<short,short>& to,
                       const vector<int>& sentf,
                       const vector<int>& sente,
                       TRule* rule) const {
    rule->f_.clear();
    rule->e_.clear();
    rule->lhs_ = kX;
    for (short i = from.first; i < to.first; ++i)
      rule->f_.push_back(sentf[i]);
    for (short i = from.second; i < to.second; ++i)
      rule->e_.push_back(sente[i]);
  }

  void DecrementDerivation(const vector<pair<short,short> >& d, const vector<int>& sentf, const vector<int>& sente) {
    if (d.size() < 2) return;
    TRule x;
    for (int i = 1; i < d.size(); ++i) {
      InstantiateRule(d[i], d[i-1], sentf, sente, &x);
      model.DecrementRule(x);
      model.DecrementAlign(x.f_.size());
    }
  }

  void PrintDerivation(const vector<pair<short,short> >& d, const vector<int>& sentf, const vector<int>& sente) {
    if (d.size() < 2) return;
    TRule x;
    for (int i = 1; i < d.size(); ++i) {
      InstantiateRule(d[i], d[i-1], sentf, sente, &x);
      cerr << i << '/' << (d.size() - 1) << ": " << x << endl;
    }
  }

  void IncrementDerivation(const vector<pair<short,short> >& d, const vector<int>& sentf, const vector<int>& sente) {
    if (d.size() < 2) return;
    TRule x;
    for (int i = 1; i < d.size(); ++i) {
      InstantiateRule(d[i], d[i-1], sentf, sente, &x);
      model.IncrementRule(x);
      model.IncrementAlign(x.f_.size());
    }
  }

  prob_t Likelihood() const {
    return model.Likelihood();
  }

  prob_t DerivationProposalProbability(const vector<pair<short,short> >& d, const vector<int>& sentf, const vector<int>& sente) const {
    prob_t p = prob_t::One();
    TRule x;
    for (int i = 1; i < d.size(); ++i) {
      InstantiateRule(d[i], d[i-1], sentf, sente, &x);
      p *= model.RuleProbability(x);
      p *= model.AlignProbability(x.f_.size());
    }
    return p;
  }

  void Sample();

  ConditionalParallelSegementationModel<PhraseConditionalBase>& model;
  MT19937* rng;
  const vector<vector<int> >& corpuse, corpusf;
  const set<int>& vocabe, vocabf;
  unsigned mh_samples, mh_rejects;
  const int kX;
  vector<vector<pair<short, short> > > derivations;
};

void ModelAndData::Sample() {
  unsigned MAXK = kMAX_SRC_PHRASE;
  unsigned MAXL = kMAX_TRG_PHRASE;
  TRule x;
  x.lhs_ = -TD::Convert("X");

  for (int samples = 0; samples < 1000; ++samples) {
    if (samples % 1 == 0 && samples > 0) {
      //ResampleHyperparameters();
      cerr << " [" << samples << " LLH=" << log(Likelihood()) << " MH=" << ((double)mh_rejects / mh_samples) << "]\n";
      for (int i = 0; i < 10; ++i) {
        cerr << "SENTENCE: " << TD::GetString(corpusf[i]) << " ||| " << TD::GetString(corpuse[i]) << endl;
        PrintDerivation(derivations[i], corpusf[i], corpuse[i]);
      }
      static TRule xx("[X] ||| w n ||| s h ||| X=0");
      const CCRP_NoTable<TRule>& dcrp = model.tmodel.r.find(xx.f_)->second;
      for (CCRP_NoTable<TRule>::const_iterator it = dcrp.begin(); it != dcrp.end(); ++it) {
        cerr << "\t" << it->second << "\t" << it->first << endl;
      }
    }
    cerr << '.' << flush;
    for (int s = 0; s < corpuse.size(); ++s) {
      const vector<int>& sentf = corpusf[s];
      const vector<int>& sente = corpuse[s];
//      cerr << "  CUSTOMERS: " << rules.num_customers() << endl;
//      cerr << "SENTENCE: " << TD::GetString(sentf) << " ||| " << TD::GetString(sente) << endl;

      vector<pair<short, short> >& deriv = derivations[s];
      const prob_t p_cur = Likelihood();
      DecrementDerivation(deriv, sentf, sente);

      boost::multi_array<prob_t, 2> a(boost::extents[sentf.size() + 1][sente.size() + 1]);
      boost::multi_array<prob_t, 4> trans(boost::extents[sentf.size() + 1][sente.size() + 1][MAXK][MAXL]);
      a[0][0] = prob_t::One();
      for (int i = 0; i < sentf.size(); ++i) {
        for (int j = 0; j < sente.size(); ++j) {
          const prob_t src_a = a[i][j];
          x.f_.clear();
          for (int k = 1; k <= MAXK; ++k) {
            if (i + k > sentf.size()) break;
            x.f_.push_back(sentf[i + k - 1]);
            x.e_.clear();
            const prob_t p_span = model.AlignProbability(k);  // prob of consuming this much source
            for (int l = 1; l <= MAXL; ++l) {
              if (j + l > sente.size()) break;
              x.e_.push_back(sente[j + l - 1]);
              trans[i][j][k - 1][l - 1] = model.RuleProbability(x) * p_span;
              a[i + k][j + l] += src_a * trans[i][j][k - 1][l - 1];
            }
          }
        }
      }
//      cerr << "Inside: " << log(a[sentf.size()][sente.size()]) << endl;
      const prob_t q_cur = DerivationProposalProbability(deriv, sentf, sente);

      vector<pair<short,short> > newderiv;
      int cur_i = sentf.size();
      int cur_j = sente.size();
      while(cur_i > 0 && cur_j > 0) {
        newderiv.push_back(pair<short,short>(cur_i, cur_j));
//        cerr << "NODE: (" << cur_i << "," << cur_j << ")\n";
        SampleSet<prob_t> ss;
        vector<pair<short,short> > nexts;
        for (int k = 1; k <= MAXK; ++k) {
          const int hyp_i = cur_i - k;
          if (hyp_i < 0) break;
          for (int l = 1; l <= MAXL; ++l) {
            const int hyp_j = cur_j - l;
            if (hyp_j < 0) break;
            const prob_t& inside = a[hyp_i][hyp_j];
            if (inside == prob_t::Zero()) continue;
            const prob_t& transp = trans[hyp_i][hyp_j][k - 1][l - 1];
            if (transp == prob_t::Zero()) continue;
            const prob_t p = inside * transp;
            ss.add(p);
            nexts.push_back(pair<short,short>(hyp_i, hyp_j));
//            cerr << "    (" << hyp_i << "," << hyp_j << ")  <--- " << log(p) << endl;
          }
        }
//        cerr << "  sample set has " << nexts.size() << " elements.\n";
        const int selected = rng->SelectSample(ss);
        cur_i = nexts[selected].first;
        cur_j = nexts[selected].second;
      }
      newderiv.push_back(pair<short,short>(0,0));
      const prob_t q_new = DerivationProposalProbability(newderiv, sentf, sente);
      IncrementDerivation(newderiv, sentf, sente);
//      cerr << "SANITY: " << q_new << "  " <<log(DerivationProposalProbability(newderiv, sentf, sente)) << endl;
      if (deriv.empty()) { deriv = newderiv; continue; }
      ++mh_samples;

      if (deriv != newderiv) {
        const prob_t p_new = Likelihood();
//        cerr << "p_cur=" << log(p_cur) << "\t p_new=" << log(p_new) << endl;
//        cerr << "q_cur=" << log(q_cur) << "\t q_new=" << log(q_new) << endl;
        if (!rng->AcceptMetropolisHastings(p_new, p_cur, q_new, q_cur)) {
          ++mh_rejects;
          DecrementDerivation(newderiv, sentf, sente);
          IncrementDerivation(deriv, sentf, sente);
        } else {
//          cerr << "  ACCEPT\n";
          deriv = newderiv;
        }
      }
    }
  }
}

int main(int argc, char** argv) {
  po::variables_map conf;
  InitCommandLine(argc, argv, &conf);
  kMAX_TRG_PHRASE = conf["max_trg_phrase"].as<unsigned>();
  kMAX_SRC_PHRASE = conf["max_src_phrase"].as<unsigned>();

  if (!conf.count("model1")) {
    cerr << argv[0] << "Please use --model1 to specify model 1 parameters\n";
    return 1;
  }
  if (conf.count("random_seed"))
    prng.reset(new MT19937(conf["random_seed"].as<uint32_t>()));
  else
    prng.reset(new MT19937);
//  MT19937& rng = *prng;

  vector<vector<int> > corpuse, corpusf;
  set<int> vocabe, vocabf;
  corpus::ReadParallelCorpus(conf["input"].as<string>(), &corpusf, &corpuse, &vocabf, &vocabe);
  cerr << "f-Corpus size: " << corpusf.size() << " sentences\n";
  cerr << "f-Vocabulary size: " << vocabf.size() << " types\n";
  cerr << "f-Corpus size: " << corpuse.size() << " sentences\n";
  cerr << "f-Vocabulary size: " << vocabe.size() << " types\n";
  assert(corpusf.size() == corpuse.size());

  Model1 m1(conf["model1"].as<string>());

  PhraseConditionalBase pcb0(m1, conf["model1_interpolation_weight"].as<double>(), vocabe.size());
  ConditionalParallelSegementationModel<PhraseConditionalBase> x(pcb0);  

  ModelAndData posterior(x, corpuse, corpusf, vocabe, vocabf);
  posterior.Sample();

  TRule r1("[X] ||| x ||| l e ||| X=0");
  TRule r2("[X] ||| A ||| a d ||| X=0");
  TRule r3("[X] ||| n ||| e r ||| X=0");
  TRule r4("[X] ||| x A n ||| b l a g ||| X=0");

  PhraseConditionalUninformativeBase u0(vocabe.size());

  cerr << (pcb0(r1)*pcb0(r2)*pcb0(r3)) << endl;
  cerr << (u0(r4)) << endl;

  return 0;
}