1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
|
#include <iostream>
#include <queue>
#include <boost/functional.hpp>
#include <boost/program_options.hpp>
#include <boost/program_options/variables_map.hpp>
#include "inside_outside.h"
#include "hg.h"
#include "hg_io.h"
#include "bottom_up_parser.h"
#include "fdict.h"
#include "grammar.h"
#include "m.h"
#include "trule.h"
#include "tdict.h"
#include "filelib.h"
#include "dict.h"
#include "sampler.h"
#include "ccrp.h"
#include "ccrp_onetable.h"
using namespace std;
using namespace tr1;
namespace po = boost::program_options;
boost::shared_ptr<MT19937> prng;
void InitCommandLine(int argc, char** argv, po::variables_map* conf) {
po::options_description opts("Configuration options");
opts.add_options()
("samples,s",po::value<unsigned>()->default_value(1000),"Number of samples")
("input,i",po::value<string>(),"Read parallel data from")
("random_seed,S",po::value<uint32_t>(), "Random seed");
po::options_description clo("Command line options");
clo.add_options()
("config", po::value<string>(), "Configuration file")
("help", "Print this help message and exit");
po::options_description dconfig_options, dcmdline_options;
dconfig_options.add(opts);
dcmdline_options.add(opts).add(clo);
po::store(parse_command_line(argc, argv, dcmdline_options), *conf);
if (conf->count("config")) {
ifstream config((*conf)["config"].as<string>().c_str());
po::store(po::parse_config_file(config, dconfig_options), *conf);
}
po::notify(*conf);
if (conf->count("help") || (conf->count("input") == 0)) {
cerr << dcmdline_options << endl;
exit(1);
}
}
unsigned ReadCorpus(const string& filename,
vector<Lattice>* e,
set<WordID>* vocab_e) {
e->clear();
vocab_e->clear();
ReadFile rf(filename);
istream* in = rf.stream();
assert(*in);
string line;
unsigned toks = 0;
while(*in) {
getline(*in, line);
if (line.empty() && !*in) break;
e->push_back(Lattice());
Lattice& le = e->back();
LatticeTools::ConvertTextOrPLF(line, & le);
for (unsigned i = 0; i < le.size(); ++i)
for (unsigned j = 0; j < le[i].size(); ++j)
vocab_e->insert(le[i][j].label);
toks += le.size();
}
return toks;
}
struct BaseModel {
explicit BaseModel(unsigned tc) :
unif(1.0 / tc), p(prob_t::One()) {}
prob_t prob(const TRule& r) const {
return unif;
}
void increment(const TRule& r, MT19937* rng) {
p *= prob(r);
}
void decrement(const TRule& r, MT19937* rng) {
p /= prob(r);
}
prob_t Likelihood() const {
return p;
}
const prob_t unif;
prob_t p;
};
struct UnigramModel {
explicit UnigramModel(unsigned tc) : base(tc), crp(1,1,1,1), glue(1,1,1,1) {}
BaseModel base;
CCRP<TRule> crp;
CCRP<TRule> glue;
prob_t Prob(const TRule& r) const {
if (r.Arity() != 0) {
return glue.prob(r, prob_t(0.5));
}
return crp.prob(r, base.prob(r));
}
int Increment(const TRule& r, MT19937* rng) {
if (r.Arity() != 0) {
glue.increment(r, 0.5, rng);
return 0;
} else {
if (crp.increment(r, base.prob(r), rng)) {
base.increment(r, rng);
return 1;
}
return 0;
}
}
int Decrement(const TRule& r, MT19937* rng) {
if (r.Arity() != 0) {
glue.decrement(r, rng);
return 0;
} else {
if (crp.decrement(r, rng)) {
base.decrement(r, rng);
return -1;
}
return 0;
}
}
prob_t Likelihood() const {
prob_t p;
p.logeq(crp.log_crp_prob() + glue.log_crp_prob());
p *= base.Likelihood();
return p;
}
void ResampleHyperparameters(MT19937* rng) {
crp.resample_hyperparameters(rng);
glue.resample_hyperparameters(rng);
cerr << " d=" << crp.discount() << ", s=" << crp.strength() << "\t STOP d=" << glue.discount() << ", s=" << glue.strength() << endl;
}
};
UnigramModel* plm;
void SampleDerivation(const Hypergraph& hg, MT19937* rng, vector<unsigned>* sampled_deriv) {
vector<prob_t> node_probs;
Inside<prob_t, EdgeProb>(hg, &node_probs);
queue<unsigned> q;
q.push(hg.nodes_.size() - 2);
while(!q.empty()) {
unsigned cur_node_id = q.front();
// cerr << "NODE=" << cur_node_id << endl;
q.pop();
const Hypergraph::Node& node = hg.nodes_[cur_node_id];
const unsigned num_in_edges = node.in_edges_.size();
unsigned sampled_edge = 0;
if (num_in_edges == 1) {
sampled_edge = node.in_edges_[0];
} else {
//prob_t z;
assert(num_in_edges > 1);
SampleSet<prob_t> ss;
for (unsigned j = 0; j < num_in_edges; ++j) {
const Hypergraph::Edge& edge = hg.edges_[node.in_edges_[j]];
prob_t p = edge.edge_prob_;
for (unsigned k = 0; k < edge.tail_nodes_.size(); ++k)
p *= node_probs[edge.tail_nodes_[k]];
ss.add(p);
// cerr << log(ss[j]) << " ||| " << edge.rule_->AsString() << endl;
//z += p;
}
// for (unsigned j = 0; j < num_in_edges; ++j) {
// const Hypergraph::Edge& edge = hg.edges_[node.in_edges_[j]];
// cerr << exp(log(ss[j] / z)) << " ||| " << edge.rule_->AsString() << endl;
// }
// cerr << " --- \n";
sampled_edge = node.in_edges_[rng->SelectSample(ss)];
}
sampled_deriv->push_back(sampled_edge);
const Hypergraph::Edge& edge = hg.edges_[sampled_edge];
for (unsigned j = 0; j < edge.tail_nodes_.size(); ++j) {
q.push(edge.tail_nodes_[j]);
}
}
// for (unsigned i = 0; i < sampled_deriv->size(); ++i) {
// cerr << *hg.edges_[(*sampled_deriv)[i]].rule_ << endl;
// }
}
void IncrementDerivation(const Hypergraph& hg, const vector<unsigned>& d, UnigramModel* plm, MT19937* rng) {
for (unsigned i = 0; i < d.size(); ++i)
plm->Increment(*hg.edges_[d[i]].rule_, rng);
}
void DecrementDerivation(const Hypergraph& hg, const vector<unsigned>& d, UnigramModel* plm, MT19937* rng) {
for (unsigned i = 0; i < d.size(); ++i)
plm->Decrement(*hg.edges_[d[i]].rule_, rng);
}
prob_t TotalProb(const Hypergraph& hg) {
return Inside<prob_t, EdgeProb>(hg);
}
void IncrementLatticePath(const Hypergraph& hg, const vector<unsigned>& d, Lattice* pl) {
Lattice& lat = *pl;
for (int i = 0; i < d.size(); ++i) {
const Hypergraph::Edge& edge = hg.edges_[d[i]];
if (edge.rule_->Arity() != 0) continue;
WordID sym = edge.rule_->e_[0];
vector<LatticeArc>& las = lat[edge.i_];
int dist = edge.j_ - edge.i_;
assert(dist > 0);
for (int j = 0; j < las.size(); ++j) {
if (las[j].dist2next == dist &&
las[j].label == sym) {
las[j].cost += 1;
}
}
}
}
int main(int argc, char** argv) {
po::variables_map conf;
InitCommandLine(argc, argv, &conf);
vector<GrammarPtr> grammars(2);
grammars[0].reset(new GlueGrammar("S","X"));
const unsigned samples = conf["samples"].as<unsigned>();
if (conf.count("random_seed"))
prng.reset(new MT19937(conf["random_seed"].as<uint32_t>()));
else
prng.reset(new MT19937);
MT19937& rng = *prng;
vector<Lattice> corpuse;
set<WordID> vocabe;
cerr << "Reading corpus...\n";
const unsigned toks = ReadCorpus(conf["input"].as<string>(), &corpuse, &vocabe);
cerr << "E-corpus size: " << corpuse.size() << " lattices\t (" << vocabe.size() << " word types)\n";
UnigramModel lm(vocabe.size());
vector<Hypergraph> hgs(corpuse.size());
vector<vector<unsigned> > derivs(corpuse.size());
for (int i = 0; i < corpuse.size(); ++i) {
grammars[1].reset(new PassThroughGrammar(corpuse[i], "X"));
ExhaustiveBottomUpParser parser("S", grammars);
bool res = parser.Parse(corpuse[i], &hgs[i]); // exhaustive parse
assert(res);
}
double csamples = 0;
for (int SS=0; SS < samples; ++SS) {
const bool is_last = ((samples - 1) == SS);
prob_t dlh = prob_t::One();
bool record_sample = (SS > (samples * 1 / 3) && (SS % 5 == 3));
if (record_sample) csamples++;
for (int ci = 0; ci < corpuse.size(); ++ci) {
Lattice& lat = corpuse[ci];
Hypergraph& hg = hgs[ci];
vector<unsigned>& d = derivs[ci];
if (!is_last) DecrementDerivation(hg, d, &lm, &rng);
for (unsigned i = 0; i < hg.edges_.size(); ++i) {
TRule& r = *hg.edges_[i].rule_;
if (r.Arity() != 0)
hg.edges_[i].edge_prob_ = prob_t::One();
else
hg.edges_[i].edge_prob_ = lm.Prob(r);
}
if (!is_last) {
d.clear();
SampleDerivation(hg, &rng, &d);
IncrementDerivation(hg, derivs[ci], &lm, &rng);
} else {
prob_t p = TotalProb(hg);
dlh *= p;
cerr << " p(sentence) = " << log(p) << "\t" << log(dlh) << endl;
}
if (record_sample) IncrementLatticePath(hg, derivs[ci], &lat);
}
double llh = log(lm.Likelihood());
cerr << "LLH=" << llh << "\tENTROPY=" << (-llh / log(2) / toks) << "\tPPL=" << pow(2, -llh / log(2) / toks) << endl;
if (SS % 10 == 9) lm.ResampleHyperparameters(&rng);
if (is_last) {
double z = log(dlh);
cerr << "TOTAL_PROB=" << z << "\tENTROPY=" << (-z / log(2) / toks) << "\tPPL=" << pow(2, -z / log(2) / toks) << endl;
}
}
cerr << lm.crp << endl;
cerr << lm.glue << endl;
for (int i = 0; i < corpuse.size(); ++i) {
for (int j = 0; j < corpuse[i].size(); ++j)
for (int k = 0; k < corpuse[i][j].size(); ++k) {
corpuse[i][j][k].cost /= csamples;
corpuse[i][j][k].cost += 1e-3;
corpuse[i][j][k].cost = log(corpuse[i][j][k].cost);
}
cout << HypergraphIO::AsPLF(corpuse[i]) << endl;
}
return 0;
}
|