1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
|
#include <iostream>
#include <tr1/memory>
#include <queue>
#include <boost/multi_array.hpp>
#include <boost/program_options.hpp>
#include <boost/program_options/variables_map.hpp>
#include "array2d.h"
#include "base_measures.h"
#include "monotonic_pseg.h"
#include "conditional_pseg.h"
#include "trule.h"
#include "tdict.h"
#include "stringlib.h"
#include "filelib.h"
#include "dict.h"
#include "sampler.h"
#include "ccrp_nt.h"
#include "corpus.h"
#include "ngram_base.h"
using namespace std;
using namespace tr1;
namespace po = boost::program_options;
void InitCommandLine(int argc, char** argv, po::variables_map* conf) {
po::options_description opts("Configuration options");
opts.add_options()
("samples,s",po::value<unsigned>()->default_value(1000),"Number of samples")
("input,i",po::value<string>(),"Read parallel data from")
("random_seed,S",po::value<uint32_t>(), "Random seed");
po::options_description clo("Command line options");
clo.add_options()
("config", po::value<string>(), "Configuration file")
("help,h", "Print this help message and exit");
po::options_description dconfig_options, dcmdline_options;
dconfig_options.add(opts);
dcmdline_options.add(opts).add(clo);
po::store(parse_command_line(argc, argv, dcmdline_options), *conf);
if (conf->count("config")) {
ifstream config((*conf)["config"].as<string>().c_str());
po::store(po::parse_config_file(config, dconfig_options), *conf);
}
po::notify(*conf);
if (conf->count("help") || (conf->count("input") == 0)) {
cerr << dcmdline_options << endl;
exit(1);
}
}
shared_ptr<MT19937> prng;
struct LexicalAlignment {
unsigned char src_index;
bool is_transliteration;
vector<pair<short, short> > derivation;
};
struct AlignedSentencePair {
vector<WordID> src;
vector<WordID> trg;
vector<LexicalAlignment> a;
Array2D<short> posterior;
};
struct HierarchicalWordBase {
explicit HierarchicalWordBase(const unsigned vocab_e_size) :
base(prob_t::One()), r(25,25,10), u0(-log(vocab_e_size)) {}
void ResampleHyperparameters(MT19937* rng) {
r.resample_hyperparameters(rng);
}
inline double logp0(const vector<WordID>& s) const {
return s.size() * u0;
}
// return p0 of rule.e_
prob_t operator()(const TRule& rule) const {
prob_t p; p.logeq(r.logprob(rule.e_, logp0(rule.e_)));
return p;
}
void Increment(const TRule& rule) {
if (r.increment(rule.e_)) {
prob_t p; p.logeq(logp0(rule.e_));
base *= p;
}
}
void Decrement(const TRule& rule) {
if (r.decrement(rule.e_)) {
prob_t p; p.logeq(logp0(rule.e_));
base /= p;
}
}
prob_t Likelihood() const {
prob_t p; p.logeq(r.log_crp_prob());
p *= base;
return p;
}
void Summary() const {
cerr << "NUMBER OF CUSTOMERS: " << r.num_customers() << " (\\alpha=" << r.concentration() << ')' << endl;
for (CCRP_NoTable<vector<WordID> >::const_iterator it = r.begin(); it != r.end(); ++it)
cerr << " " << it->second << '\t' << TD::GetString(it->first) << endl;
}
prob_t base;
CCRP_NoTable<vector<WordID> > r;
const double u0;
};
struct BasicLexicalAlignment {
explicit BasicLexicalAlignment(const vector<vector<WordID> >& lets,
const unsigned words_e,
const unsigned letters_e,
vector<AlignedSentencePair>* corp) :
letters(lets),
corpus(*corp),
//up0(words_e),
//up0("en.chars.1gram", letters_e),
//up0("en.words.1gram"),
up0(letters_e),
//up0("en.chars.2gram"),
tmodel(up0) {
}
void InstantiateRule(const WordID src,
const WordID trg,
TRule* rule) const {
static const WordID kX = TD::Convert("X") * -1;
rule->lhs_ = kX;
rule->e_ = letters[trg];
rule->f_ = letters[src];
}
void InitializeRandom() {
const WordID kNULL = TD::Convert("NULL");
cerr << "Initializing with random alignments ...\n";
for (unsigned i = 0; i < corpus.size(); ++i) {
AlignedSentencePair& asp = corpus[i];
asp.a.resize(asp.trg.size());
for (unsigned j = 0; j < asp.trg.size(); ++j) {
const unsigned char a_j = prng->next() * (1 + asp.src.size());
const WordID f_a_j = (a_j ? asp.src[a_j - 1] : kNULL);
TRule r;
InstantiateRule(f_a_j, asp.trg[j], &r);
asp.a[j].is_transliteration = false;
asp.a[j].src_index = a_j;
if (tmodel.IncrementRule(r))
up0.Increment(r);
}
}
cerr << " LLH = " << Likelihood() << endl;
}
prob_t Likelihood() const {
prob_t p = tmodel.Likelihood();
p *= up0.Likelihood();
return p;
}
void ResampleHyperparemeters() {
cerr << " LLH_prev = " << Likelihood() << flush;
tmodel.ResampleHyperparameters(&*prng);
up0.ResampleHyperparameters(&*prng);
cerr << "\tLLH_post = " << Likelihood() << endl;
}
void ResampleCorpus();
const vector<vector<WordID> >& letters; // spelling dictionary
vector<AlignedSentencePair>& corpus;
//PhraseConditionalUninformativeBase up0;
//PhraseConditionalUninformativeUnigramBase up0;
//UnigramWordBase up0;
//HierarchicalUnigramBase up0;
HierarchicalWordBase up0;
//CompletelyUniformBase up0;
//FixedNgramBase up0;
//ConditionalTranslationModel<PhraseConditionalUninformativeBase> tmodel;
//ConditionalTranslationModel<PhraseConditionalUninformativeUnigramBase> tmodel;
//ConditionalTranslationModel<UnigramWordBase> tmodel;
//ConditionalTranslationModel<HierarchicalUnigramBase> tmodel;
ConditionalTranslationModel<HierarchicalWordBase> tmodel;
//ConditionalTranslationModel<FixedNgramBase> tmodel;
//ConditionalTranslationModel<CompletelyUniformBase> tmodel;
};
void BasicLexicalAlignment::ResampleCorpus() {
static const WordID kNULL = TD::Convert("NULL");
for (unsigned i = 0; i < corpus.size(); ++i) {
AlignedSentencePair& asp = corpus[i];
SampleSet<prob_t> ss; ss.resize(asp.src.size() + 1);
for (unsigned j = 0; j < asp.trg.size(); ++j) {
TRule r;
unsigned char& a_j = asp.a[j].src_index;
WordID f_a_j = (a_j ? asp.src[a_j - 1] : kNULL);
InstantiateRule(f_a_j, asp.trg[j], &r);
if (tmodel.DecrementRule(r))
up0.Decrement(r);
for (unsigned prop_a_j = 0; prop_a_j <= asp.src.size(); ++prop_a_j) {
const WordID prop_f = (prop_a_j ? asp.src[prop_a_j - 1] : kNULL);
InstantiateRule(prop_f, asp.trg[j], &r);
ss[prop_a_j] = tmodel.RuleProbability(r);
}
a_j = prng->SelectSample(ss);
f_a_j = (a_j ? asp.src[a_j - 1] : kNULL);
InstantiateRule(f_a_j, asp.trg[j], &r);
if (tmodel.IncrementRule(r))
up0.Increment(r);
}
}
cerr << " LLH = " << tmodel.Likelihood() << endl;
}
void ExtractLetters(const set<WordID>& v, vector<vector<WordID> >* l, set<WordID>* letset = NULL) {
for (set<WordID>::const_iterator it = v.begin(); it != v.end(); ++it) {
vector<WordID>& letters = (*l)[*it];
if (letters.size()) continue; // if e and f have the same word
const string& w = TD::Convert(*it);
size_t cur = 0;
while (cur < w.size()) {
const size_t len = UTF8Len(w[cur]);
letters.push_back(TD::Convert(w.substr(cur, len)));
if (letset) letset->insert(letters.back());
cur += len;
}
}
}
void Debug(const AlignedSentencePair& asp) {
cerr << TD::GetString(asp.src) << endl << TD::GetString(asp.trg) << endl;
Array2D<bool> a(asp.src.size(), asp.trg.size());
for (unsigned j = 0; j < asp.trg.size(); ++j)
if (asp.a[j].src_index) a(asp.a[j].src_index - 1, j) = true;
cerr << a << endl;
}
void AddSample(AlignedSentencePair* asp) {
for (unsigned j = 0; j < asp->trg.size(); ++j)
asp->posterior(asp->a[j].src_index, j)++;
}
void WriteAlignments(const AlignedSentencePair& asp) {
bool first = true;
for (unsigned j = 0; j < asp.trg.size(); ++j) {
int src_index = -1;
int mc = -1;
for (unsigned i = 0; i <= asp.src.size(); ++i) {
if (asp.posterior(i, j) > mc) {
mc = asp.posterior(i, j);
src_index = i;
}
}
if (src_index) {
if (first) first = false; else cout << ' ';
cout << (src_index - 1) << '-' << j;
}
}
cout << endl;
}
int main(int argc, char** argv) {
po::variables_map conf;
InitCommandLine(argc, argv, &conf);
if (conf.count("random_seed"))
prng.reset(new MT19937(conf["random_seed"].as<uint32_t>()));
else
prng.reset(new MT19937);
// MT19937& rng = *prng;
vector<vector<int> > corpuse, corpusf;
set<int> vocabe, vocabf;
corpus::ReadParallelCorpus(conf["input"].as<string>(), &corpusf, &corpuse, &vocabf, &vocabe);
cerr << "f-Corpus size: " << corpusf.size() << " sentences\n";
cerr << "f-Vocabulary size: " << vocabf.size() << " types\n";
cerr << "f-Corpus size: " << corpuse.size() << " sentences\n";
cerr << "f-Vocabulary size: " << vocabe.size() << " types\n";
assert(corpusf.size() == corpuse.size());
vector<AlignedSentencePair> corpus(corpuse.size());
for (unsigned i = 0; i < corpuse.size(); ++i) {
corpus[i].src.swap(corpusf[i]);
corpus[i].trg.swap(corpuse[i]);
corpus[i].posterior.resize(corpus[i].src.size() + 1, corpus[i].trg.size());
}
corpusf.clear(); corpuse.clear();
vocabf.insert(TD::Convert("NULL"));
vector<vector<WordID> > letters(TD::NumWords());
set<WordID> letset;
ExtractLetters(vocabe, &letters, &letset);
ExtractLetters(vocabf, &letters, NULL);
letters[TD::Convert("NULL")].clear();
BasicLexicalAlignment x(letters, vocabe.size(), letset.size(), &corpus);
x.InitializeRandom();
const unsigned samples = conf["samples"].as<unsigned>();
for (int i = 0; i < samples; ++i) {
for (int j = 4995; j < 4997; ++j) Debug(corpus[j]);
cerr << i << "\t" << x.tmodel.r.size() << "\t";
if (i % 10 == 0) x.ResampleHyperparemeters();
x.ResampleCorpus();
if (i > (samples / 5) && (i % 10 == 9)) for (int j = 0; j < corpus.size(); ++j) AddSample(&corpus[j]);
}
for (unsigned i = 0; i < corpus.size(); ++i)
WriteAlignments(corpus[i]);
//ModelAndData posterior(x, &corpus, vocabe, vocabf);
x.tmodel.Summary();
x.up0.Summary();
//posterior.Sample();
return 0;
}
|